Неотъемлемым компонентом любой волоконно-оптической сети являются коннекторные соединения, которые состоят из двух основных компонентов: двух оптических разъемов и розетки (адаптера) для их соединения.
Оптическая розетка (адаптер) – это приспособление со сквозным продольным отверстием и крепежными элементами для коннекторов определенного типа с обеих сторон. Назначением оптической розетки является точное сведение ферул двух коннекторов и фиксация их в таком положении для обеспечения передачи данных.
Рисунок 1 – Схема коннекторного соединения
Оптический коннектор (разъем) – это кабельное окончание. Коннектор устанавливается по обе стороны любого оптического кабеля, будь то магистральный или распределительный кабель, или даже соединительный патч корд. Существует большое множество различных типов оптических разъемов, отличающихся по конструктивному исполнению, способу фиксации, диаметру ферулы типу полировки и т.д.
Рисунок 2 – конструкция оптического коннектора
Основными конструктивными элементами оптического разъёма являются корпус, ферула и фиксатор. Наиболее популярны коннекторы с диаметром ферулы 2,5 мм и 1,25 мм
Рисунок 3 – разновидности оптических коннекторов и адаптеров
По конструктивному исполнению наиболее популярными типами являются коннекторы FC, SC, LC и ST типа. Рассмотрим их отличия.
SC коннекторы – одни из наиболее применяемых разъемов. Они имеют пластиковый корпус прямоугольного сечения и ферулу диаметром 2,5 мм. К преимуществам оптического SC разъема можно отнести простоту коммутации. Для фиксации в розетке достаточно просто вставить его до щелчка. Аналогично производится и его извлечение. Вместе с тем, он плохо адаптирован к механическим и вибрационным нагрузкам.
LC разъем по форме и принципу коммутации напоминает рассмотренный выше SC коннектор. Однако он имеет существенно меньшие габариты корпуса, да и ферула у него диаметром всего 1,25 мм. Компактный размер оптического LC разъема позволяет существенно повысить плотность портов на кроссе. Вместе с тем, из-за недостаточного пространства усложняется коммутация. При большой плотности портов коммутацию удобно выполнять только при помощи специализированного инструмента
Рис. 4. Инструмент Jonard FCT-100 для установки/извлечения коннекторов SC и LC в труднодоступных местах
FC разъем по праву считается самым надежным из перечисленных выше оптических коннекторов. Он имеет металлический корпус и фиксируется в розетке при помощи резьбового соединения. Последнее придает такому соединению механической прочности и вибрационной устойчивости. Но в удобстве коммутации он явно проигрывает. Оптические разъемы FC по умолчанию устанавливаются на все измерительные приборы для ВОЛС.
ST разъем на данный момент считается уже устаревшим, однако до сих пор применяется в многомодовых системах передач. Его фиксация напоминает фиксацию байонет разъема (вставить и немного провернуть по часовой стрелке). В отличие от остальных типов коннекторов, ферула коннектора ST имеет только UPC полировку.
Рисунок 5 – типы полировки ферулы коннектора
Чаще всего используются коннекторы с UPC полировкой. Коннекторы с APC полировкой более дорогие, однако позволяют уменьшить возвратные потери (основным составляющим возвратных потерь линии являются отражения в разъемных соединителях) оптической линии, что очень чувствительно для линий, по которым передается видео контент (КТВ, PON). Мощность сигнала в таких сетях намного больше, чем в стандартных сетях передачи данных, поэтому и отраженный сигнал имеет большую мощность. В этих сетях применяются исключительно разъемы с APC полировкой. Более детально механизмы возникновения потерь и отражения в разъемных соединителях описаны в следующем разделе.
Чаще всего, используются разъемы, предназначенные для внутриобъектового применения. Однако существуют коннекторы и для уличного применения – усиленные коннекторы. Они имеют повышенную устойчивость к физическим нагрузкам, влажности и перепаду температур. Такие коннекторы адаптированы для установки на кабели различного диаметра и сечения и чаще всего устанавливаются в уличных распределительных ящиках.
При распространении по оптической линии сигнал претерпевает затухание и отражение от неоднородностей коэффициента преломления.
Затухание сигнала в ВОЛС обуславливается потерями в самом оптоволокне, потерями в сварных (неразъемных) и коннекторных (разъемных) соединителях, потерями в других компонентах ВОЛС (ответвители, сплиттеры и т.д).
Чем меньше затухание сигнала в линии, тем менее мощное и менее дорогое приемо-передающее оборудование может работать на ней. Или тем больше расстояние, на которое можно передать информацию без ошибок по этой линии.
Основными же причинами возникновения потерь и отражения в разъемных оптических соединителях являются:
Как бы плотно мы бы не зажимали коннектор в розетке, всё равно между световодами волокон (размещёнными в центре ферулы коннектора) останется небольшой зазор, заполненный воздухом. В связи с тем, что показатель преломления воздуха отличается от показателя преломления оптического световода (сердцевины оптического волокна), часть излучения отражается при переходе из коннектора первого кабеля в воздушное пространство. Еще часть излучения отражается при переходе света из воздуха в коннектор второго соединяемого кабеля. Таким образом, при переходе через разъемный соединитель мощность сигнала уменьшается.
Вместе с тем, само отражение тоже является отрицательным фактором. Отраженный обратно к передатчику сигнал слепит его (как водителя слепит свет встречного транспортного средства в темное время суток) и приводит к возникновению битовых ошибок и нагреванию SFP модулей. А как следствие – снижение скорости передачи и ухудшение качества видео (наверное, все видели разноцветные квадратики на экране телевизора) и выход из строя SFP модуля.
Для уменьшения влияния отраженных сигналов на передатчик, в системах передачи используются коннекторы с APC полировкой.
Рисунок 6 – Влияние типа полировки оптического коннектора на мощность отраженного к передатчику сигнала
Такие коннекторы имеют срезанный под углом 8-9 градусов торец, что позволяет изменить траекторию отраженного сигнала. Отраженный под таким углом сигнал выходит за пределы световода и не возвращается к передатчику.
Разъемы с APC полировкой обычно окрашены в зеленый цвет. Для их соединения используются тоже зеленые адаптеры. И соединять между собой синие (UPC полировка) и зеленые APC полировка) коннекторы, как вы понимаете, нельзя.
Если в разъемный соединитель (в зазор между ферулами коннекторов) попадает грязь или жир – это еще больше усугубляет ситуацию, описанную в предыдущем пункте. А при диаметре световода в 9 микрометров (для одномодового оптического волокна) для серьезного ухудшения качества передачи сигнала достаточно даже одного прикосновения пальцем к торцу коннектора.
Рис. 7. Фотография торца загрязненного и поврежденного коннектора (a – грязь; b – жир; c – царапина)
Именно поэтому требуется регулярная чистка и инспектирование разъемных соединителей. Более подробно о чистке оптических разъемов можно посмотреть в этом видео:
Рисунок 8 – типы трещин в торце волокна
Данную поломку можно легко идентифицировать при помощи оптических микроскопов. А чрезмерный изгиб (макроизгиб) такого кабеля хоть и не увеличит отражения, потому что на изгибе отражения не возникают, зато внесет очень большие потери. Такие потери будут тем больше, чем больше длина волны, на которой они измеряются. Например, потери на длине волны 1550 нм будут значительно превосходить потери на длине волны 1310 нм. Для идентификации и локализации такого повреждения в оптической линии понадобится оптический рефлектометр с двумя рабочими длинами волн, 1310 нм и 1550 нм. Идентифицировать макроизгиб в оптическом патчкорде, сплайс кассете муфты или распределительного ящика можно при помощи визуализатора повреждений.
Это создает еще большие препятствия для распространения сигнала и приводит к его отражению и затуханию.
Рисунок 9 – смещение ферул в оптическом адаптере
В сквозном отверстии адаптера чаще всего находится керамическая трубка, которая при неаккуратной коммутации может сломаться. Признаками ее поломки также будут флуктуации (постоянно меняющееся значение) мощности сигнала и его затухания.
К сожалению, на рынке встречаются пигтейлы и патч корды, при производстве которых использовано как раз такое волокно. В этом случае, даже при точном сведении ферул коннекторов не удастся добиться низких потерь и отражения в оптическом волокне. Детально эта тема раскрыта в статье.
Одним из компонентов оптического кросса является также оптический патчкорд.
Рисунок 10 – схема подключения оптического кабеля к приемо-передающей аппаратуре
Оптический патч корд – это волоконно-оптический кабель небольшой длины (обычно от 1 до 50 м) на обоих концах которого установлены коннекторы. Чаще всего для производства оптических патчкордов используется внутриобъектовый оптический кабель с диаметром оболочки 2-3 мм.
Оптические патч корды отличаются по нескольким параметрам:
Рисунок 11 – Симплексный (а) и дуплексный (б) оптические патчкорды
Маркировка патчкордов отличается у разных производителей. Однако в любом случае она включает в себя основные данные:
Обычно операторы, интеграторы и провайдеры покупают патч-корды уже в готовом виде. Вместе с тем, существует простой способ изготавливать их и самостоятельно при помощи технологии Splice On.
Этот способ позволит оперативно изготовить патчкорд нужной длины и с нужными типами коннекторов с обоих сторон. Особенно это актуально при необходимости изготовления гибридных патч-кордов (которые имеют коннекторы разного типа и полировки с обоих концов). Такие патч-корды, да еще и нужной длины, не всегда есть на складе поставщиков. Кроме того, вы будете уверены в высоком качестве такого изделия.
Известно, что наиболее частыми причинами неработоспособности оптических линий связи являются повреждения на кроссе. Поэтому ниже приведено несколько простых правил как этого избежать: