При монтаже и обслуживании волоконно-оптических линий невозможно обойтись без проведения ряда измерений (см. дополнительно приборы для диагностики волоконно-оптического кабеля). Конкретный набор параметров зависит от выполняемых работ. Самым типичным для этапа монтажа является измерение затухания как всей линии, так и отдельных сростков, выполненных с помощью сварки или механических сплайсов. На этапе пуско-наладочных работ и эксплуатации определяются уровни мощности оптического излучения на выходе передатчика и входе приемника, а также фиксируется коэффициент ошибок. В случае обнаружения каких-либо проблем производится диагностика линии с помощью оптического рефлектометра. При проведении кроссовых работ встает задача идентификации линий и их окончаний, проверки исправности коммутационных шнуров и правильности кроссировки (просветка, аналог «прозвонки» на металлических кабелях).
Стандарты на параметры волоконно-оптической линии определяют требования к максимальному погонному затуханию; максимальному затуханию, вносимому соединителем или сростком; максимальной протяженности линии и ее сегментов. Для некоторых приложений может потребоваться соблюдение дополнительных требований: минимальной полосы пропускания, максимальных величин затухания и длины канала на основе волоконно-оптической линии. Очевидно, что для проведения такого широкого спектра измерений и тестов понадобится несколько приборов, а стоят они весьма недешево, как и весь связанный с волоконной оптикой инструментарий. Тем не менее, даже обладая ограниченной суммой, сегодня без проблем можно подобрать универсальный комплект для проведения всех основных измерений.
Самая распространенная задача при эксплуатации - коммутационные работы, для выполнения которых выпускается целый ряд простых и недорогих приборов. Пожалуй, наиболее полезным из них можно назвать инструмент для визуализации дефектов оптического волокна, коммутационных шнуров и некоторых типов оптических кабелей. Визуализатор пригодится для обнаружения целого ряда проблем: неисправностей на небольшой дистанции (до нескольких сотен метров), обрывов и изгибов малого радиуса в многомодовых коммутационных шнурах и кабелях, изгибов малого радиуса в одномодовых кабелях. Еще одно применение визуализатора - просветка волоконно-оптических линий (до 5 км на одномодовых и до 2 км на многомодовых) - может с успехом применяться для контроля их целостности и идентификации кабельных окончаний.
Визуализатор производится в нескольких вариантах. Самые удобные из них - «фонарик» и «брелок». Сам прибор содержит источник излучения красного цвета (длина волны около 650 нм) и элементы питания. Суть его применения довольно проста - в местах, где волокно имеет трещины или сколы, излучение хорошо заметно на поверхности. Поскольку наблюдать за ним иногда приходится при ярком свете, в некоторых приборах оно модулируется низкой частотой (около 1 Гц) для улучшения видимости.
Еще удобнее и безопаснее проверка целостности линии и идентификация окончаний кабелей может быть выполнена с помощью простого тестера. Кроме прочего, он позволяет проверить, соответствует ли уровень вносимого затухания допустимым пределам. Как и большинство других приборов, о которых речь пойдет ниже, тестер состоит из источника излучения (используемые излучатели обычно работают только в одном из рабочих диапазонов оптического кабеля) и приемника со световой и звуковой индикацией.
Определить наличие излучения в волокне и его направление, а также оценить его мощность - причем без нарушения связи и выполнения коммутаций - позволяет детектор излучения на основе изгибного ответвителя. Оптическое волокно вкладывается в паз ответвителя и изгибается с определенным радиусом. Вышедшее наружу из-за нарушения условий распространения излучение фиксируется и обрабатывается. Детекторы излучения рассматриваемого вида могут иметь не только световой, но и звуковой индикатор. Некоторые модели рассчитаны на использование вместе с источником тестовых сигналов в виде модулированного некоторой частотой излучения; в них встроен детектор для определения наличия и значения частоты модуляции. Такая пара незаменима для идентификации оптических кабелей и их окончаний.
Рассмотренные выше простые приборы не только облегчают работу, но и обеспечивают безопасность. При их отсутствии возникает желание заглянуть в волокно, чтобы проверить, есть ли в нем свет, а это верный путь повредить глаз, если волокно окажется подключенным... В соответствии с правилами техники безопасности все коммутационные работы следует выполнять в защитных очках, поскольку они оберегают глаза от типичного для оптических линий излучения (600–1700 нм). В крайнем случае, для обнаружения и идентификации излучения в волокне можно воспользоваться простейшими индикаторами. Фоточувствительный слой каждого из них преобразует невидимое инфракрасное излучение с определенной длиной волны в видимое, и, если поднести сердечник соединителя к индикатору, оно станет заметным.
Одно из основных измерений для волоконно-оптических линий - определение затухания. Эту величину можно измерить несколькими методами, отличающимися технологией калибровки и точностью измерения. Но неизменно для выполнения измерения требуется две вещи - стабилизированный источник излучения и измеритель оптической мощности. Задача заключается в определении разности мощности сигнала, поданного на линию, и мощности сигнала, полученного с нее на другом конце. Причем, ввиду различия условий распространения излучения в каждом направлении, измерение необходимо выполнить в обе стороны. И если уж совсем нет времени, оно должно проводиться в том же направлении, в котором установленное на этой линии оборудование будет впоследствии передавать данные.
Измерение можно провести следующими способами.
В качестве излучателя в источниках может встречаться как светодиод, так и лазер. Дешевле всего источники излучения на основе светодиодов. Они пригодны для тестирования лишь многомодового волокна, так как в одномодовое не удается ввести излучение достаточной мощности. Светодиодные источники вообще отличаются невысокой выходной мощностью и точностью в спектральной области (ширина их спектра составляет 30–200 нм). Тем не менее, благодаря стабильной мощности и низкой стоимости, они широко используются как в источниках излучений, так и в другом оборудовании для работы по многомодовому волоконно-оптическому кабелю. Лазерные источники дороже, но пригодны для тестирования одномодового волокна. Для них характерна более высокая, чем у светодиодных, мощность и точность (ширина спектра 0,1–5 нм), но стабильность выходной мощности ниже. Кроме того, большинство лазерных источников чувствительнo к отраженному излучению, наличие которого может привести к нарушению системы регулирования выходной мощности. Наибольшую стоимость имеют лазерные источники излучения с различными усовершенствованиями для обеспечения более высокой входной мощности и ее стабильности, а также более узкого или настраиваемого спектра излучения.
Простейшие источники выдают излучение только с одной длиной волны (660, 780, 850, 980, 1300, 1310, 1480, 1550 или 1625 нм). Более сложные имеют несколько выходов с разной длиной волны или один с возможностью электронного выбора ее необходимого значения из пары (например, 850/1300 - для многомодового, 1310/1550 и 1550/1650 - для одномодового волокна). Такие источники отличаются друг от друга в основном конструкцией и набором органов управления. Они могут иметь и некоторые дополнительные функции. Например, возможность получить на выходе не только непрерывное, но и модулированное излучение (обычно с частотой 270, 1000 или 2000 Гц), что чрезвычайно удобно для идентификации оптических кабелей.
При выборе источника прежде всего следует учитывать тип оптических кабелей и задействованные в используемом оборудовании длины волн. Но свое влияние могут оказать и дополнительные факторы, о которых нужно помнить. Например, на источники излучения для тестирования многомодовых волоконно-оптических линий в соответствии со стандартом TIA/EIA568 налагаются определенные ограничения: светодиодные источники могут работать только с модовым фильтром, нельзя применять некоторые лазерные источники излучения (лазеры VCSEL с длиной волны 850 нм и все лазеры с длиной волны 1300 нм). Поэтому без анализа возможных приложений и технических описаний источников излучения не обойтись.
Измерители оптической мощности различаются между собой по функциональным характеристикам гораздо существенней, чем источники излучения. Во-первых, это диапазон измерений, точность, рабочий диапазон длин волн (поскольку один измеритель может применяться с несколькими источниками) и ширина спектра (от 5 нм у точных приборов до 100 нм у простых), возможность одновременного измерения на двух длинах волн (обычно 850/1300 и 1310/1550 нм). Во-вторых, средства управления, обработки и отображения - речь идет о системе меню для выбора режимов работы, калибровке и автоматическом учете вносимого шнурами затухания, пересчете результатов измерения в другие единицы (мкВт, дБ, дБм), типе клавиатуры и дисплея. И наконец, возможность сохранения результатов измерений и их вывода на печать или записи в компьютер.
Нетрудно сделать вывод, что выбор измерителей оптической мощности очень широк. Чтобы не ошибиться, потенциальному покупателю стоит прислушаться к рекомендациям производителей, поскольку они предлагают специально подобранные комплекты приборов.
Но и это еще не все. Целый ряд комбинированных устройств содержит как источник излучения, так и измеритель. С помощью одного такого приспособления можно провести измерения параметров лишь коммутационных шнуров или оптических кабелей на катушке. Параметры дуплексного канала (пары волокон) определяются путем одновременной установки двух приборов в местах окончания линии.
Если же предусмотрена конструктивная возможность подключения к волокну выхода источника сигнала или входа измерителя оптической мощности, то пара таких устройств обеспечит измерение затухания в обоих направлениях без их перемещения и коммутационных работ. Это позволит существенно сэкономить время при проведении двухсторонних измерений. Односторонние измерения обходятся значительно дешевле (особенно, если нельзя воспользоваться прибором с поддержкой двухсторонних измерений), но качественное тестирование линий требует двухсторонних измерений. В противном случае существует вероятность того, что не обнаруженные при одностороннем тестировании проблемы проявятся впоследствии.
Кроме того, наличие в одном устройстве и источника, и средств измерения позволяет определить возвратные потери. Отражения полезного сигнала от различных неоднородностей линии в ряде случаев могут влиять на работоспособность приложений. Особенно принципиальны они, например, для систем передачи с использованием лазерных источников излучения (отраженное излучение служит препятствием для автоматического контроля уровня мощности) или высококачественных систем телевизионного вещания с аналоговой передачей сигнала (отраженное излучение вносит искажения в полезный сигнал). И, напротив, они не представляют опасности для линий на базе многомодового оптического кабеля, если передача осуществляется с помощью светодиодного источника излучения.
Величина отражений характеризуется коэффициентом отражения - долей излучения, отраженного от заданной точки на пути его распространения. Таким образом, этот параметр характеризует влияние, вносимое конкретной неоднородностью (например, соединителем). А вот по возвратным потерям судят о суммарном отраженном сигнале, зафиксированном в заданной точке волокна. Иначе говоря, возвратные потери позволяют оценить мощность отраженного излучения от всех неоднородностей на линии.
Возвратные потери можно измерить как с помощью специально для этого предназначенного, так и комбинированного прибора, при наличии у него соответствующей функции. Величина отраженного излучения от отдельных компонентов линии может быть определена и посредством рефлектометра, однако точность будет невысока, поэтому он больше подходит для диагностики (поиска конкретного места с сильным отражением), чем для измерений.
Функциональность универсального прибора или комплекта не ограничивается измерением возвратных потерь - при покупке не следует забывать о его дополнительных возможностях. Например, нужно обратить внимание на наличие в источнике излучения такой встроенной функции, как визуализатор неисправностей (источник видимого излучения). В случае, когда приобретается работающее в паре оборудование, полезным окажется и встроенное переговорное устройство. Учитывая высокую стоимость приборов, не стоит говорить о важности и необходимости «мелочей» наподобие резиновой защитной оболочки, сумки, комплекта надежных коммутационных шнуров, набора переходников с соединителями различного типа, калиброванной оправки.
Даже такая банальная вещь, как оправка (цилиндр калиброванного диаметра), может оказаться незаменимой при изготовлении нормализующей катушки. Несколько намотанных на оправку витков многомодового волокна (обычно четыре-пять) представляют собой модовый фильтр, который позволяет устранить в излучении моды высшего порядка и распространяющиеся в оболочке волокна. Фильтр необходим для повышения точности измерения затухания на коротких отрезках кабеля (до 1 км). Кроме того, оправка может применяться для подавления отраженного излучения в определенной точке для идентификации точного места на рефлектограмме.
Конечно, если речь идет о небольшом объеме работ, то от универсальности можно отказаться в пользу недорогого минимального комплекта приборов. При измерении затухания можно, например, воспользоваться простой парой приборов для получения приблизительной оценки. Но даже такой невысокой точности измерений достаточно в большинстве случаев, с которыми приходится сталкиваться при эксплуатации линий внутри компании.
Еще один экономичный вариант - приставка к мультиметру. В набор входят источник излучения и оптико-электронный преобразователь, подключаемый к мультиметру для проведения измерений. Так как без мультиметра в любом случае не обойтись, то экономия налицо. Но точность будет невысока, и удобств во время работы трудно ожидать.
Отдельную нишу занимают приборы для тестирования волоконно-оптических линий структурированных кабельных систем. Их функциональный набор ориентирован на проведение измерений в соответствии с требованиями стандартов на СКС. Возможности универсальных приборов и тестеров оптических СКС не пересекаются. Все дело в том, что последние предназначены для проведения большого объема максимально автоматизированных работ (речь, по сути, идет об абонентском участке). Кроме того, сертификационные тесты проводятся в соответствии с четко стандартизованными процедурами (TIA/EIA568, ISO11801 и EN 50173) и/или для известных приложений (различных вычислительных сетей, где в качестве физической среды используется оптическое волокно: 10BASE-F, 100BASE-F, 1000BASE-SX/LX, ATM, FDDI, Fibre Channel и др.). Поэтому результат предоставляется в виде «да/нет» с оформленным протоколом измерений, который можно сохранить в памяти прибора, считать с компьютера и распечатать. Пользователь имеет возможность редактировать процедуры тестирования волокна и допустимые пределы измеряемых параметров. Итак, двумя главными особенностями тестеров оптических СКС являются развитые сервисные функции для автоматизации измерений и достаточно узкая область применения (ограничения на диапазон измеряемых величин вытекают из типичных для СКС параметров оптических линий).
Несмотря на ограничения в использовании, тестеры оптических СКС, как и любые созданные для повышения производительности труда приборы, стоят достаточно дорого. Особенно недешевы полнофункциональные устройства для автоматического двухстороннего тестирования пары волокон. Между тем полезными могут оказаться и реализованные в них дополнительные функции, среди которых, например, измерение длины тестируемого волокна и задержки распространения сигнала, а также переговорное устройство. Именно такие приборы требуются тем, кто занимается монтажом и сдачей заказчику СКС с предъявлением оформленных результатов выполнения всех предусмотренных стандартами сертификационных процедур. А вот те, кто отвечает за обслуживание СКС, могут воспользоваться и более простым оборудованием с цифровым отображением информации для проведения элементарных измерений на одном волокне.
В случае, когда без пригодного для сертификации прибора не обойтись, единственный способ экономии состоит в приобретении оптических приставок к аппаратам для сертификации СКС на основе кабелей с витыми парами. Большинство производителей выпускают модели тестеров СКС Категорий 5 и 6, допускающие установку приставок для работы с волокном. Тестер с приставкой обеспечит проведение всего предусмотренного стандартами TIA/EIA568, ISO11801 и EN 50173 комплекса измерений и ничем не отличается от специального прибора для сертификации оптических СКС. В некоторых случаях можно даже выбрать из двух вариантов: приставка-измеритель оптической мощности вместе с отдельным источником излучения для одностороннего тестирования одного волокна (требуется один тестер) или две полнофункциональные приставки для одновременного двухстороннего тестирования пары волокон на двух длинах волн (требуется два тестера).
Применение приставок позволяет уменьшить затраты и сократить число необходимых для приобретения приборов, сохранив при этом полную функциональность и удобство. Но такое решение рекомендуется производителями, как малобюджетное, пригодное лишь для малого объема работ. Когда предполагаются полномасштабные измерения или монтаж меди и оптики выполняется разными бригадами, удобнее использовать специализированные приборы.