

Тестер-анализатор пакетных сетей МАКС-ЕМ

Руководство по эксплуатации, совмещенное с паспортом

МБСЕ.468212.004 РЭ

Оглавление

	Список принятых сокращений	2
1	Назначение	4
2	Технические данные и спецификации	5
3	Комплект поставки	7
4	Устройство и работа	8
5	Маркирование	15
6	Упаковка	16
7	Общие указания по эксплуатации	17
8	Указание мер безопасности	18
9	Подготовка к работе	19
10	Порядок работы	20
1	0.1 Главное меню и работа с меню	20
1	0.2 Топология процессов	21
1	0.3 Меню Измерения	22
1	0.4 Диагностика медного кабеля	23
1	0.5 Утилиты TCP/IP	24
1	0.6 Схемы подключений прибора	27
1	0.7 BER Tecт	29
1	0.8 Тест трафика	31
1	0.9 Методика RFC 2544	34
1	0.10 Пакетный джиттер	41
1	0.11 Многопоточность	42
1	0.12 Тестирование временной синхронизации РТР	44
1	0.13 Удаленное управление ОАМ	47
1	0.14 Шлейф	49
1	0.15 Транзит	51
1	0.16 Статистика	52
1	0.17 Память	54
1	0.18 Параметры интерфейсов	55
1	0.19 Удаленное управление	58
1	0.20 Настройки и опции прибора	63
11	Методика поверки	66
12	Техническое обслуживание	73
13	Транспортировка и хранение	74
14	Сведения об изделии	75
Гар	рантии изготовителя	76
Сві	идетельство о приемке	77
Сві	идетельство об упаковке	78
Св	едения о первичной и периодической поверке	79
	едения о рекламации	81
Прі	иложение А.	82

Руководство по эксплуатации тестера-анализатора пакетных сетей МАКС-ЕМ предназначено для изучения характеристик прибора и правил по его эксплуатации с целью правильного и эффективного использования анализатора.

В настоящем руководстве приняты следующие сокращения и обозначения:

Таблица 1.1

ARP Address Resolution Protocol, протокол разрешения адресов Васк-to-back Тест определения предельной нагрузки	
адресов	
Back-to-back Тест определения предельной нагрузки	
Back to back Tool onpodestorius inpodestorius harpyons	
BER Bit Error Rate Коэффициент битовых ошибок	
CRC Cyclic Redundancy Checksum, контрольная сумма на	
основе циклического избыточного кода	
DHCP Dynamic Host Configuration Protocol, протокол	
динамической конфигурации узла сети	
DNS Domain Name System, система доменных имён	
DSCP Differentiated Services Code Point	
DUT Device Under Test, тестируемое устройство	
Frame Loss Rate Тест уровня потерь кадров	
VLAN ID Идентификатор VLAN	
IFG Inter Frame Gap, межкадровый интервал	
IP Internet Protocol, протокол Internet	
Уникальный идентификатор (адрес) устройства,	
ІР-адрес подключенного к объединенной сети на основе	
семейства протоколов ТСР/ІР	
LAN Local Area Network, локальная сеть	
Latency Тест определения задержки распространения кадров	3
MAC Media Access Control, управление доступом к среде	
ма С апрос Уникальный идентификатор (адрес), используемый дл	ĮЛЯ
мас-адрес адресации устройств сети на физическом уровне	
Operations Administration Maintenance; эксплуатация,	
ОАМ администрирование, обслуживание. Протокол	
мониторинга состояния канала	
OSI Open Systems Interconnection Reference Model,	
эталонная модель взаимодействия открытых систем	
QoS Quality of Service, настройки качества обслуживания	
PCP Priority Code Point, поле приоритета трафика для VLAN по IEEE 802.1p	١N
утипита пла проверки соелинений в сетах на основе	
TCP/IP	
Precedence Приоритет трафика	
PTP Precision Time Protocol, протокол точного времени	

Один из разъемов стандартов Registered Jack, используемый в сетях Ethernet для соединения ви пар			
SFD	Start of Frame Delimiter, разделитель начала кадра		
SFP	Small Form-factor Pluggable, приёмопередатчик, применяемый для передачи данных в телекоммуникациях		
Service Level Agreement, соглашение об уровн обслуживания между оператором предоставля услуги связи и клиентом			
Throughput	Тест пропускной способности		
ToS	Type of Service, тип обслуживания		
TPID Tag Protocol Indentifier, идентификатор протоко тегирования VLAN			
VID	VLAN Identifier, идентификатор VLAN		
VLAN	Virtual Local Area Network, виртуальная локальная сеть		
VLAN-тег	Соответствующее поле Ethernet кадра		
ВП Витая пара			
К3	Короткое замыкание		
ПК	Персональный компьютер		
ПО	Программное обеспечение		

Условные обозначения

В этом руководстве используются условные обозначения, как показано в следующей таблице.

Таблица 1.2

Описание	Пример
Действие пользователя на приборе	нажать клавишу «Сохранить»
отображаются жирным шрифтом	нажать клавишу «Сохранить»
Названия пунктов меню, полей ввода и	
отображения информации на приборе	В меню «Статистика»
отображаются жирным шрифтом	
Текст, который необходимо вводить в	следующим образом: http://192.168.0.111
поля меню на приборе или компьютере	
отображается следующим шрифтом	
Пункты, отмеченные как «Внимание!»	
указывают на потенциально опасную	
ситуацию, которая, если ее не	Внимание!
избежать, приведет к порче	
оборудования или травме	

1 Назначение

Тестер-анализатор пакетных сетей МАКС-ЕМ предназначен для использования при техническом обслуживании, проведении ремонтных работ, паспортизации, сертификации и приемо-сдаточных испытаниях на сетях Ethernet и Gigabit Ethernet.

Прибор MAKC-EM позволяет производить измерения для медного Ethernet (10BASE-T, 100BASE-T, 1000BASE-T) и оптического Ethernet (1000BASE-X).

Функциональные возможности прибора МАКС-ЕМ включают:

- генерация и анализ трафика на канальном, сетевом и транспортном уровнях на двух интерфейсах одновременно;
- тестирование в соответствии с рекомендацией RFC-2544;
- измерение распределения пакетного джиттера;
- функция шлейфа на физическом, канальном и сетевом уровнях;
- контроль связанности каналов и маршрутов на уровне IP;
- сбор и отображение статистической информации по принимаемому и передаваемому трафику;
- организация соединения с одного измерительного порта на другой (режим Транзит);
- диагностика неисправностей медного кабеля;
- удаленное управление через порт USB и Ethernet.

1.1. Предельные условия эксплуатации.

МАКС-ЕМ имеет портативное исполнение и предназначен для эксплуатации в условиях:

- температура окружающей среды от + 5 °C до + 40 °C;
- − относительная влажность воздуха до 90% при температуре + 25 °C;
- атмосферное давление не ниже 450 мм рт. ст. (60 кПа) и не выше 795 мм рт. ст. (106 кПа).

Питание прибора осуществляется от встроенных аккумуляторов или сети переменного тока напряжением 220 $^{+22B}/_{-33B}$, (при питании прибора от блока питания). Прибор рассчитан на непрерывную круглосуточную работу.

2 Технические данные и спецификации

Прибор обеспечивает:

- независимую поддержку и тестирование двух интерфейсов Ethernet/Gigabit Ethernet;
- генерацию трафика на физическом, канальном и сетевом уровнях;
- сбор и отображение статистической информации по принимаемому и передаваемому трафику с разделение по типам и размерам кадров, а также по ошибочным кадрам;
- формирование отчетов по текущим результатам измерений;
- тестирование в соответствии с рекомендацией RFC 2544 с проведением тестов: пропускная способность, задержка распространения, зависимость уровня потерь кадров от загрузки канала, предельная нагрузка;
- контроль связности каналов и маршрутов на уровне IP: эхотестирование, маршрут, DNS;
- организацию шлейфа на четырех уровнях: физическом, канальном, сетевом и транспортном с возможностью замены и перестановки полей пакета;
- организацию соединения с одного измерительного порта на другой с параллельным сбором статистики в режиме мониторинга (режим транзит);
- фильтрацию трафика на канальном и сетевом уровнях;
- диагностику неисправностей медного кабеля;
- поддержку протоколов разрешения адресов (ARP) и динамической конфигурации узла сети (DHCP);
- поддержку функций обнаружения удаленных устройств по протоколу Ethernet OAM;
- тестирование прохождения трафика;
- тестирование в многопоточном режиме;
- измерение распределения пакетного джиттера;
- измерение параметров синхронизации по протоколу РТР IEEE1588;
- реализацию удаленного управления через порт USB и отдельный порт Ethernet с помощью программы удаленного управления;
- хранение сохраненных настроек и результатов измерений во внутренней памяти.

Спецификации

Таблица 2.1

	Таблица 2.1
Характеристики	Описание
Интерфейсы	
Электрический Ethernet/IP	10 100 1000 Мбит/с два интерфейса
	RJ45
Оптический Ethernet/IP	1000 Мбит/с два интерфейса SFP
Интерфейс для управления,	USB-клиент, Ethernet 10/100 BASE-T
подключения к ПК	
Дисплей	Графический, цветной, разрешения
	320х240 точек
Аккумуляторы	6 шт. тип АА NiMH
Массогабаритные характерис	тики
Длина	196 мм
Ширина	100 мм
Высота	40 мм
Bec	0,6 кг
Питание	
Время автономной работы в	до 4 ч
режиме тестирования	
Время заряда аккумуляторов	не более 12 ч
Напряжение питание прибора	12 B
	•
Предельные условия эксплуа	тации
Температура окружающей	от + 5 °C до + 40 °C
среды	
Относительная влажность	до 90% при температуре + 25 °C
воздуха	
Атмосферное давление	не ниже 450 мм рт. ст. (60 кПа) и не
	выше 795 мм рт. ст. (106 кПа)
Прочие характеристики	
Амплитуда импульсов на	1,5 B ± 0,5 B
тестовом выходе TST.	
<u> </u>	·

3 Комплект поставки

Таблица 3.1

Наименование	Количество	Примечание		
Тестер-анализатор МАКС-ЕМ	1			
Блок питания	1	*		
Кабель USB-порта	1	*		
Патчкорд дуплексный	3	*		
Патчкорд оптический, дуплексный	2	**		
Диагностический переходник ДП1	1	**		
Оптический SFP-модуль	2	**		
Сумка	1	*		
СD-диск с программным	1			
обеспечением				
Защитный чехол	1	**		
Руководство по эксплуатации,	1			
совмещенное с паспортом				
* Допускается применение покупных изделий других типов, не				

ухудшающих технические характеристики изделия в целом ** Поставляются по согласованию с заказчиком

4 Устройство и работа

4.1. Передняя панель

Вид передней панели прибора показан на рисунке 4.1. На панели находятся: светодиодные индикаторы, дисплей и клавиатура.

Рисунок 4.1 Вид передней панели прибора

4.1.1. Светодиодные индикаторы

Светодиодные индикаторы (далее индикаторы) обеспечивают визуальный контроль условий измерения, передачи и приема данных.

Индикаторы располагаются непосредственно над дисплеем. Прибор МАКС-ЕМ имеет по четыре индикатора на каждый порт A и B: Test, Rx, Tx, Link (слева направо). В зависимости от режимов работы прибора индикаторы могут показывать различную статусную информацию. Под индикаторами на дисплее располагаются подписи, которые показывают режим работы прибора и индикаторов.

Значение светодиодных индикаторов

Индикаторы **Test** указывают на то, что порт занят выполнением теста, при этом они могут гореть тремя разными цветами:

- зелёный включен режим «Шлейф», «Транзит», либо порт занят в проведении теста;
- оранжевый в данный момент осуществляется один из тестов, которые еще не завершился, но в процессе его выполнения произошли ошибки;
- красный последний тест, проходивший с данного порта, завершился с неуспешным результатом.

Подписи к индикаторам **Test** на экране прибора могут быть следующего содержания:

A->A – выбрана топология передачи трафика из порта A в порт A;

A->B – выбрана топология передачи трафика из порта A в порт B;

В->А – выбрана топология передачи трафика из порта В в порт А;

В->В – выбрана топология передачи трафика из порта В в порт В;

BERT – порт занят приемом или передачей трафика BER теста;

САВ – порт занят передачей и приемом сигналов теста кабеля;

DNS – порт занят передачей и приемом кадров теста **DNS**;

JIT – порт занят приемом или передачей трафика теста «**Пакетный джиттер**»;

LB – выбран пункт меню «Шлейф»;

LB1 – включен режим «**Шлейф**» первого уровня;

LB2 – включен режим «Шлейф» второго уровня;

LB3 – включен режим «**Шлейф»** третьего уровня;

LB4 – включен режим «**Шлейф»** четвертого уровня;

MS – порт занят передачей и приемом трафика теста «**Многопоточность**»;

ОАМ – включен активный режим ОАМ;

PING – порт занят передачей и приемом трафика теста **«Эхо-запрос»**;

RFC - порт занят приемом или передачей трафика теста «RFC 2544»;

THRU – выбрано меню **«Транзит»**, либо включен режим **«Транзит»**;

TRR – порт занят передачей и приемом кадров теста «Маршрут»;

TRAF – порт занят приемом или передачей данных теста трафика;

PTP – порт занят приемом или передачей данных теста «PTP».

Подсветка подписи к индикатору **Test** белым цветом производится в режимах «**Шлейф**» или «**Транзит**». Подсветка подписи к индикатору **Test** желтым цветом производится в меню «**Топология процессов**» на порту, который является генератором трафика, а также во время проведения тестов с генерацией трафика. Подсветка подписи к индикатору **Test** красным цветом производится, если последний проходивший с данного порта тест, завершился с неуспешным результатом.

Индикаторы **Rx** отображают состояние приёма данных:

зелёный — в данный момент осуществляется приём кадров на соответствующем порту.

Подсветка подписи к индикатору **Rx** зеленым цветом сообщает о том, что порт является приемником тестового трафика теста RFC 2544, либо на данном порту включен режим «**Шлейф**» или «**Транзит**».

Индикаторы **Тх** отображают передачу данных:

зелёный — в данный момент производится передача кадров на соответствующем порту.

Подсветка подписи к индикатору **Тх** желтым цветом сообщает о том, что порт является передатчиком тестового трафика теста RFC 2544.

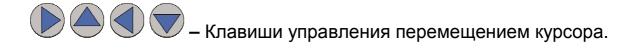
Индикаторы Link отображают состояние соединения:

зелёный – включение соединения на соответствующем порту.

Подписи к индикаторам на экране прибора отображают значение скорости передачи и режима дуплекса: «1000» для 1000BASE-T и 1000BASE-X, «100» для 100BASE-T, «10» для 10BASE-T, «NS» — синхронизация отсутствует. Символ «Н» обозначает режим полудуплекс, символ «F» обозначает режим полный дуплекс.

4.1.2. Дисплей

В качестве экрана в приборе используется цветной графический жидкокристаллический дисплей с разрешением 320×240 пикселей.


4.1.3. Клавиатура

Ввод буквенно-цифровой информации и управление в приборе производится с помощью клавиатуры.

Описание клавиш

(F1) (F2) (F3) – Функциональные клавиши. Действия, выполняемые клавишами, зависят от режима работы прибора. Если клавиша доступна, назначение высвечивается в описании клавиш в нижней части дисплея прибора.

- Клавиша «**Ввод**», при ее нажатии происходит вход в соответствующий раздел или подраздел меню, либо нажатие клавиши приводит к изменению параметра.
- Клавиша «**Меню**», при ее нажатии происходит возврат в предыдущее меню или отмена текущего действия.

4.1.4. Внешние разъемы

Расположение внешних разъемов прибора на верхней, нижней и боковой сторонах представлено на рисунке 4.1.4.

Назначение разъемов и подключаемые к ним устройства приведены в Таблице 4.1.

На корпусе прибора имеется маркировка разъемов в соответствии с названиями, приведенными в Таблице 4.1.

Таблица 4.1 Назначение разъемов прибора

Маркировка	Назначение	
A, B	Разъемы RJ-45 для подключения к тестируемому устройству или сети	
SFP A, SFP B Разъемы для подключения к тестируемому устройству или сети через SFP-модули		
12 V Разъем для подключения блока питания и заряда аккумуляторов		
LAN Разъем RJ-45 для удаленного управления прибором		
USB Разъем USB для удаленного управления прибором		
TST	Разъем RJ-12 для поверки прибора	
<u></u> Подключение заземления		
RST Скрытая кнопка аппаратного сброса*		

^{*} Примечание: Для выполнения аппаратного сброса прибора

необходимо тонким тупым стержнем нажать на скрытую кнопку, расположенную в отверстии RST. При этом текущие настройки не сохраняются, и при следующем включении прибора настройки устанавливаются из сохраненных данных в последнем обычном выключении прибора (см. п. 9.4).

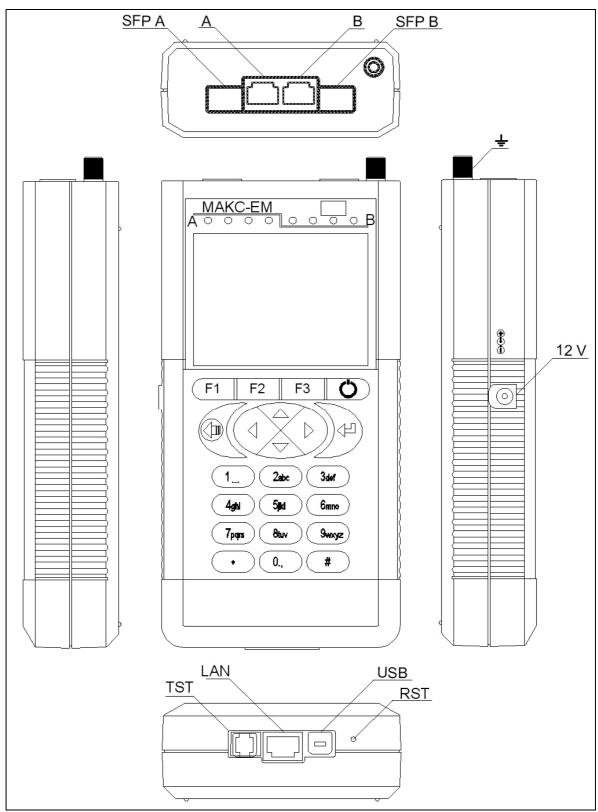


Рис. 4.1.4 Схема расположения разъемов прибора

Подключение приемопередатчика SFP

Разъемы SFP A, SFP В предназначены для подключения к прибору оптических модулей SFP или медных модулей SFP с внешними разъемами RJ45. Можно использовать SFP модули, поставляемые с прибором или другие SFP модули.

Перед вставкой SFP модуля необходимо удостоверится, что приемопередатчик и разъем поддерживают одни и те же физические интерфейсы. Необходимо закрыть запирающую защелку на SFP модуле. SFP модуль вставляется в разъем с этикеткой, обращенной в сторону задней панели прибора. После того как SFP модуль установлен, он надежно фиксируется в разъеме с помощью запирающей защелки внутри модуля, это будет ясно по звуку щелчка.

Внимание! Если при первой установке SFP модуля чувствуется сопротивление, не нужно оказывать дополнительного давления, это может вызвать повреждение разъема.

Информация о вставленных SFP модулях (см. п. 10.19.3) может отображать, что модуль имеется в наличие еще до того, как он будет надежно установлен. Необходимо убедиться, что SFP модуль вставлен правильно.

Если SFP модуль не используется и оптоволоконная вилка вынута из него, необходимо использовать резиновую крышку для воспрепятствования загрязнения.

Перед удалением SFP модуля из разъема необходимо отсоединить оптоволоконные вилки, нажав на них защелки, и осторожно вынуть кабель из приемопередатчика. После этого необходимо открыть защелку на SFP модуле и, потянув на нее, извлечь модуль из разъема.

Для хранения SFP модулей необходимо использовать антистатические коробки или пакеты, а также закрывать оптические разъемы резиновыми крышками.

4.2. Характеристики составных частей прибора

4.2.1. Блок питания

Блок питания предназначен для питания прибора МАКС-ЕМ от сети переменного тока и заряда встроенных в него аккумуляторных элементов. Представляет собой импульсный блок питания. Имеет встроенную защиту от короткого замыкания и перегрузки.

Вход: переменное напряжение (100 ÷ 240) В, частотой (50 ÷ 60) Гц. Выход: постоянное напряжение 12 В, ток – до 1.5 А, стабилизированный.

Распайка штекера блока питания в соответствии с рисунком 4.2.

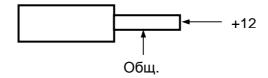


Рисунок 4.2 Распайка штекера блока питания

5 Маркирование

5.1. Прибор имеет следующую маркировку:

- наименование предприятия-изготовителя;
- условное наименование аппаратуры;
- месяц, год изготовления;
- порядковый номер аппаратуры по системе нумерации предприятияизготовителя.

5.2. Маркировка потребительской тары содержит:

- товарный знак завода-изготовителя;
- наименование и заводское обозначение прибора;
- дату упаковки;
- сведения о температуре транспортировки и хранения.

5.3. Транспортная маркировка должна содержать:

- наименование грузоотправителя и грузополучателя;
- массы брутто и нетто грузового места;
- манипуляционные знаки «Хрупкое осторожно», «Беречь от влаги», «Верх».

6 Упаковка

6.1. Прибор с комплектом принадлежностей и эксплуатационной документацией помещают в транспортную сумку и упаковывают в картонную коробку в соответствии с конструкторской документацией. Необходимость дополнительной упаковки в ящик оговаривается в договоре на поставку. Упаковку следует производить в помещении с относительной влажностью воздуха до 80 % при температуре от 15°C до 35°C.

7 Общие указания по эксплуатации

- **7.1.** До начала работы с прибором МАКС-ЕМ внимательно изучите настоящее Руководство по эксплуатации, назначение клавиш клавиатуры, внешних разъемов и составных частей прибора.
- **7.2.** Работа прибора должна происходить в условиях, которые не выходят за пределы рабочих условий эксплуатации. Питающая сеть не должна иметь резких скачков напряжения. Рядом с рабочим местом не должно быть источников сильных магнитных и электрических полей.
- **7.3.** Оберегайте прибор и блок питания от ударов, попадания влаги и пыли, длительного воздействия прямых солнечных лучей.
- **7.4.** При вводе прибора в эксплуатацию после его пребывания в условиях пониженной температуры, следует выдержать прибор в нормальных условиях не менее 2 часов, после чего приступать к эксплуатации.
- **7.5.** При перерывах в работе более двух часов, рекомендуется отключать блок питания от сети.
 - 7.6. По питанию прибор может эксплуатироваться в следующих режимах:
 - от сети 220 ^{+22B}/_{-33B}, частотой 50-60 Гц с помощью блока питания;
 - от аккумуляторных элементов (6 × AA NiMH, емкостью 2300 мАч каждый).

Уровень заряда аккумуляторных элементов можно оценить по индикатору заряда батареи в нижнем правом углу экрана «—». Чем больше сегментов отображается, тем выше заряд. Одновременно с этим, при разряде аккумуляторов, меняется и цвет значка батареи (зеленый, желтый, красный). Во время заряда индикатор попеременно, раз в секунду меняет свои цвета. При подключении блока питания, индикатор заряда батареи приобретает следующий вид «••••».

Заряд аккумуляторных элементов (см. п. **10.16.1).** Время полного заряда аккумуляторных элементов при нормальных климатических условиях – не более 14 ч.

Срок службы аккумуляторных элементов зависит от количества циклов «заряд-разряд». Допускается до 500 циклов «заряд – разряд» для данного типа аккумуляторных элементов.

При полностью заряженных аккумуляторных элементах и в зависимости от их состояния, продолжительность работы прибора в автономном режиме без подзарядки составляет не менее четырех часов.

Примечание: Допускается применение аккумуляторных элементов (6 × AA) типа NiMH или NiCd меньшей емкости. При этом время полного заряда и время автономной работы уменьшится.

8 Указание мер безопасности

Внимание ! Во внешнем блоке питания имеется опасное для жизнинапряжение. Запрещается эксплуатация блока питания с поврежденным корпусом.

9 Подготовка к работе

- **9.1.** Извлеките прибор из упаковки, произведите внешний осмотр. Проверьте комплектность в соответствии с Таблицей 2.1.
 - 9.2. Выдержите прибор в нормальных условиях не менее 2 часов.
 - 9.3. Подключите составные части прибора.
- 9.4. Подключите блок питания к сети (если для питания прибора будет использоваться сетевое напряжение).

Если для питания будут использоваться аккумуляторные элементы, то необходимо их зарядить. Аккумуляторные элементы заряжаются только при включенном приборе (см. п. 7.6).

9.4. Для включения прибора необходимо нажать и удерживать клавишу **«Включение/Выключение»** в течение 2 секунд. Когда на прибор будет подано питание и он загрузится, на экране должно отобразиться меню прибора.

Для выключения прибора после однократного нажатия клавиши «Включение/Выключение» нужно также нажать подтверждение выключения в меню. Прибор сохраняет текущие настройки при каждом правильном выключении. При последующем включении прибор загружает сохраненные настройки и включает установленные при выключении функции.

10 Порядок работы

10.1 Главное меню и работа с меню

Главное меню появляется при включении прибора. Вид главного меню показан на рис. 10.1.

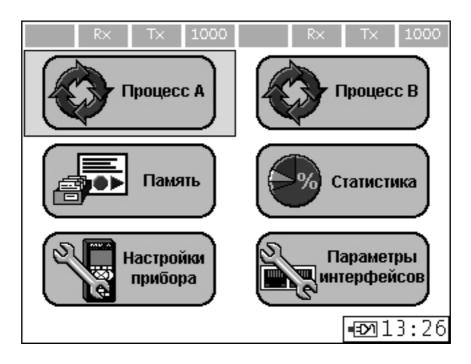


Рис. 10.1 Главное меню

Меню «Процесс A» и «Процесс B» представляют топологию процессов для портов A и B.

Меню «Память» предназначено для просмотра информации о выполненных измерениях (имя записи, время, дата), для сохранения результатов теста и загрузки ранее сохраненных результатов.

Меню «Статистика» представляет статистическую информацию об измерениях.

Меню «**Настройки пробора**» используется для выбора необходимых параметров функционирования прибора.

Меню **«Параметры интерфейсов»** отображает настройки для трех Ethernet портов: измерительных портов A, B и порта удаленного управления.

Работа с меню

Перемещение между иконками, закладками и строчками меню прибора осуществляется с помощью клавиш управления перемещением курсора. При этом надпись активной иконки или закладки подсвечивается синим цветом, неактивных - черным. Вход в пункты меню осуществляется по клавише «Ввод». При входе в область закладки, надпись текущей

закладки меняет черный цвет на серый. Выход из текущей закладки осуществляется по клавише «**Меню**». Поля ввода, значения которых могут быть изменены, и подписи галок отображаются синим цветом, остальные информационные поля отображаются черным цветом.

10.2 Топология процессов

Из разделов «Главного меню»: «Процесс А» и «Процесс В» открывается меню для выбора топологии процессов для портов А и В. Вид меню «Топология процессов» показан на рис. 10.2.

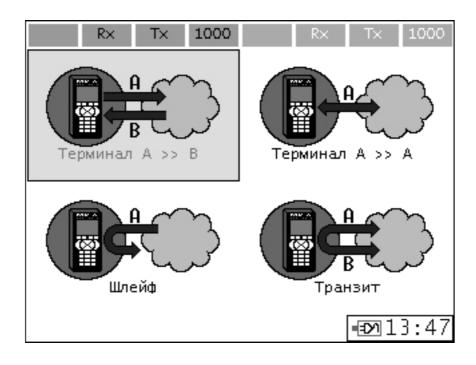


Рис. 10.2 Меню «Топология процессов»

Режим «Терминал» определяет порты приема и передачи трафика во время выполнения тестов. Данный режим устанавливает топологию для тестов с генерацией трафика: «RFC 2544», «Теста трафика», «Пакетный джиттер», «Многопоточность», «BERT», а также для тестов «TCP/IP», «ОАМ». Для теста «Диагностика медного кабеля», выбор топологии портов приема не принципиален. Тест «РТР» может запускаться только с порта А.

Режимы «**Шлейф**» и «**Транзит**» запрещают все тесты на выбранном порту.

При запущенных тестах, либо включенных режимах «Шлейф» и «Транзит», выбранный порт является занятый процессом, и вход в пункты меню, которые могут вызвать конфликт, блокируются. При этом заблокированные пункты меню отображаются серыми иконками. При запущенных тестах или режимах, в которых участвуют оба порта,

некоторые пункты меню противоположного порта также будут заблокированы.

10.3 Меню Измерения

Из разделов меню **«Топология процессов»**: **«Терминал А>>В»**, **«Терминал В>>А»**, **«Терминал В>>А»** открывается меню **«Измерения»** для выбора измерительных тестов для портов А и В.

Вид меню «Измерения» показан на рисунке 10.3.

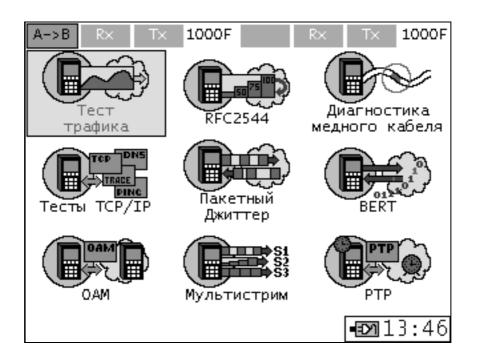


Рис. 10.3 Меню «Измерения»

В меню находятся тесты:

- Тест Трафика;
- Тест RFC 2544;
- Диагностика медного кабеля;
- Тесты ТСР/ІР;
- Пакетный Джиттер;
- BER Тест;
- OAM;
- Многопоточность;
- PTP.

Цветными иконками отображаются тесты, которые можно запускать.

Серыми иконками отображаются тесты, запуск которых заблокирован связанными измерениями выбранного порта, либо связанными измерениями другого порта, либо отсутствием соответствующей опции в приборе.

10.4 Диагностика медного кабеля

Тестирование кабеля проводится в два этапа: тест качества кабеля и определение параметров витых пар. При тесте качества кабеля используется рефлектометрический метод диагностики неисправности с измерением расстояния до места дефекта и типа неисправности кабеля и вилок. Тест качества кабеля осуществляется при отсутствии синхронизации в линии, таким образом, во время выполнения теста индикатор Link будет гаснуть. Тест проводится отдельно для каждой витой пары (ВП) 1-2, 3-6, 4-5, 7-8 разъема RJ-45.

Вид меню «Диагностика медного кабеля» показан на рисунке 10.4.

CAB R	Tx 1	000F	Rx	Tx 1000F		
Тест кабе	Тест кабеля Порт А					
Пара	1-2	3-6	4-5	7-8		
Статус	норма	норма	норма	норма		
Дист.,м						
Канал	В	А	D	C		
Полярн.	+	+	+	+		
Зад.,нс	0	8	0	0		
Тест кабе	ля Порт В					
Пара	1-2	3-6	4-5	7-8		
Статус	обрыв	обрыв	обрыв	обрыв		
Дист.,м	0	0	0	0		
Канал	A	В	C	D		
Полярн.	+	+	+	+		
Зад.,нс	0	0	0	0		
Старт А Старт В •№ 13:51						

Рис. 10.4 Диагностика медного кабеля

Статистика теста кабеля содержит поля:

Статус – результат теста качества кабеля, может быть следующими:

- Норма кабель в норме и подключен к линии;
- Ошибка тест не пройден*;
- Обрыв обрыв в ВП;
- K3 короткое замыкание в ВП;
- Удов. Удовлетворительно**.

Дист. – расстояние до места короткого замыкания или обрыва, либо точки существенного отражения посланного импульса в случае, когда поле «Статус» принимает значение «удов.». В случае короткого замыкания или обрыва линии расстояние до места неисправности определяется рефлектометрическим методом с точностью +/-1 метр. В иных случаях длина кабеля измеряется с точностью до 10 метров.

Канал*** – канал MDI либо MDI-X (См. Таблица А.7 Приложение А).

Полярн. – полярность витой пары. Может принимать значения: положительная "+" или отрицательная "-".

- **Зад.** задержка перекоса в выбранной витой паре вследствие разности длин отдельных пар, показывает разностную задержку данной витой пары относительно самой короткой витой пары. Погрешность измерения 8 нс.
- * Примечание: В случае, если во время тестирования на дальнем конце линия находилась в режиме форсированных 100 Мб/с без автосогласования и при этом не была автоматически рассинхронизирована.
- ** **Примечание:** В ВП нет короткого замыкания и нет обрыва линии, но амплитуда отраженного сигнала низкая, например, по причине плохого контакта в вилках или розетках.
- *** **Примечание:** Для прямого кабеля автосогласование происходит по схеме MDI-MDIX, для перекрестного кабеля по схеме MDI-MDI или MDIX-MDIX.

Определение параметров витых пар осуществляется при синхронизированной линии.

10.5 Утилиты ТСР/ІР

10.5.1 Эхо-тестирование

Эхо-тестирование (Ping) применяется для проверки достижимости определенного узла сети. Устройство, которому предназначается кадр, если оно способно отвечать, ответит на эхо-запрос, посланный согласно протоколу ICMP, эхо-ответом, по которому можно рассчитать двухстороннюю задержку. Также определяется процент потерь кадров. Вид меню «Эхо-тестирование» показан на рисунке 10.5.1.

Результат тестирования предоставляется в виде таблицы, которая отображает информацию по шести последним запросам, а также в виде статистики за весь последний интервал тестирования. Первый столбец таблицы отображает номер запроса. Второй столбец – статус запроса, который может принимать значения:

Запрос – был отправлен эхо-запрос, но ответ пока не пришел;

- Прошел на эхо-запрос был получен правильный ответ;
- Таймаут истекло время ожидания ответа на эхо-запрос;
- Прерван ожидание ответа на последний эхо-запрос было прервано пользователем.

Третий столбец отображает размер полезной нагрузки посланного кадра в байтах. Четвертый столбец отображает двухстороннюю задержку распространения.

PING	R× T×	100 F	x Tx NS
Pin	ıg 🗸	$\overline{}$	
Отпра	витель	192.1	68.000.200
Получ	атель	192.1	68.000.001
No	Статус	Размер	Задержка
6	Прошел	64 6.	9 мс
5	Прошел	64 6.	10 мс
4	Прошел	64 6.	10 мс
3	Прошел	64 6.	12 мс
2	Прошел	64 6.	14 мс
1	Прошел	<u>6</u> 4 6.	12 мс
Сто	п Наст	р. Стат	. • • • • • 15:07

Рис. 10.5.1 Эхо-тестирование

Настройки теста Эхо-запрос

IP адрес – адрес получателя - устройства, на которое посылаются ICMP-пакеты для проверки его достижимости;

Разм. пак. – длина кадра в байтах; для сетей не поддерживающих Jumbo-кадры максимальная длина полезной нагрузки ICMP-пакета равна 1472 байта;

Время ожидания — время ожидания ответа на посланный пакет, теста эхо-запрос, выраженное в миллисекундах;

Пауза — время между отправкой двух последовательных пактов теста эхо-запрос, выраженное в миллисекундах.

Статистика эхо-тестирования

По результатам выполнения эхо-тестирования предоставляется следующие измеренные параметры:

Отправлено – количество отправленных кадров;

Получено – количество полученных кадров;

Потеряно – количество потерянных кадров;

Задержка

Средняя — средняя задержка; **Минимальная** — минимальная задержка; **Максимальная** — максимальная задержка.

10.5.2 Маршрут (Traceroute)

Тест Маршрут применяется для определения маршрутов прохождения кадров в сетях TCP/IP. В процессе теста в строках формируемой таблицы отображаются информация обо всех промежуточных маршрутизаторах, через которые проходит кадр по пути к конечному узлу сети. Вид меню «Маршрут» показан на рисунке 10.5.2.

Результат тестирования предоставляется в виде таблицы, которая отображает информацию о промежуточных узлах. Первый столбец таблицы отображает номер промежуточного узла. Второй столбец – IPадрес промежуточного узла. В случае истечения времени ожидания ответа в строке отображается надпись «Таймаут»*. Третий столбец отображает задержку отклика узла. Перемещение по таблице происходит постранично с помощью клавиш «Вверх» и «Вниз».

	T 100		D. T. NC
A->B	× T× 100		R× T× NS
/ Ping	У Маршрут	· V	Υ ,
IP адр	ec	074.0)14.204.103
Узел	IP адр	ec	Время, мс
1	192.168.	0.1	3
2	таймау	/T	
3	10.2.132	.13	114
4	10.2.255	.204	99
4 5 6	10.2.130	0.61	181
6	таймау	/T	
7	10.2.130		94
8	83.229.24	0.93	118
Стар	г Настр.].	-⊡ 16:56

Рис. 10.5.2 Маршрут

Настройки теста Маршрут

IP-адрес – IP-адрес получателя, конечного узла сети.

Время ожидания - время ожидания ответа на запрос от

^{*} Примечание: Многие узлы сети блокируют возможность ответов на кадры ICMP протокола, в таких случаях выводится сообщение «Таймаут».

промежуточного узла сети.

10.5.2 DNS

DNS (система доменных имен) — распределенная система для получении информации о доменах. Функция позволяет получать IP-адрес хоста по его доменному имени.

Вид меню «DNS» показан на рисунке 10.5.3.

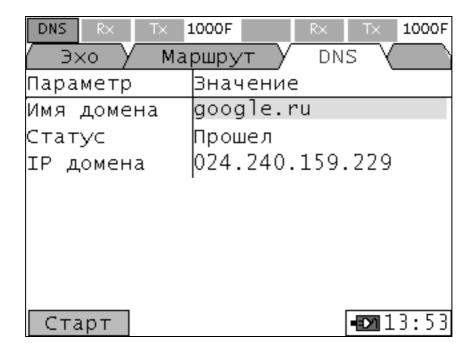


Рис. 10.5.3 DNS

Hacтройки теста DNS

Имя домена — доменное имя, по которому будет произведен DNSзапрос.

Статус – текущий статус выполнения теста.

ІР домена – полученный ІР-адрес домена.

В тесте DNS в поле «Статус» может принимать следующие значения:

- **Прошел** тест прошел упешно и получен ответ на DNS-запрос;
- **В процессе** отправлен DNS-запрос, тест в ожидании ответа;
- Ошибка в процессе запуска теста произошла ошибка (неправильное имя домена и т д);
- « » тест еще не запускался ни разу.

10.6 Схемы подключений прибора

Тесты с генерацией трафика: «Тест трафика», «RFC-2544», «Пакетный джиттер», «ВЕКТ», «Многопоточность». Для проведения этих тестов прибор можно подключать к участку сети или тестируемому сетевому устройству по двум схемам измерений «А» и «В»

представленным на рисунках 10.6.1 и 10.6.2.

В схеме «А» в качестве устройства формирования шлейфа может быть либо второй прибор МАКС-ЕМ, либо второй порт прибора МАКС-ЕМ (в случае непосредственного наличия двух интерфейсов в одной точке), либо прибор МАКС-ЕМВ.

Рис. 10.6.1 Схема «А» подключения прибора в режиме тестирования

По схеме «А» чаще всего проводят тесты участков сети, где точка формирования шлейфа удалена. При этом уровень шлейфа — 1, 2, либо 3 выбирается в зависимости от того, какое сетевое оборудование присутствует на участке сети. К примеру, если участок сети содержит только сетевые коммутаторы — свитчи, то нужно включать функцию «Шлейф» уровня 2, а если участок сети содержит маршрутизаторы, необходимо включать функцию «Шлейф» уровня 3. Подробнее о функции «Шлейф» в пункте 10.13.

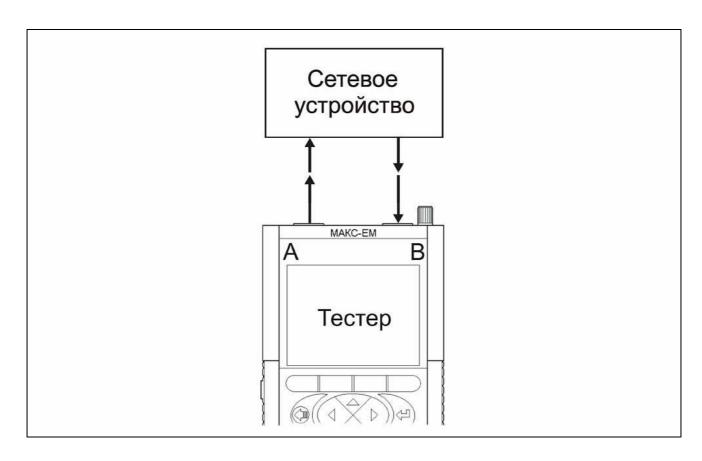


Рис. 10.6.2 Схема «В» подключения прибора в режиме тестирования

По схеме «В» чаще проводят тесты сетевого оборудования. При этом осуществляется однонаправленная передача тестового трафика с одного порта на другой.

10.7 BER Тест

10.7.1 Описание BER теста

BER Тест является тестом первого уровня, позволяющем тестировать канал на наличие битовых ошибок. Коэффициент битовых ошибок (BER) равен отношению числа принятых бит с ошибками к общему числу принятых бит.

BER Тест не предназначен для тестирования участков сети, содержащих сетевое оборудование второго и третьего уровня, т. к. при этом будет происходить потери кадров на этом оборудовании.

При тестировании участка сети с заворотом по схеме «А» (см. рис. 10.6.1), в удаленной точке необходимо включать шлейф первого уровня. Вид меню «**BER тест»** показан на рисунке 10.7.

A->B R×	T× 1000F	R×	Tx 1000F	
BERT		Статисти	ка	
Прошло		00:00:04		
Остал.		00:00:56		
R× бит		22971724	8	
R× Ebit		0		
BER		0.00000e+00		
LSS		0		
LOS		0		
LSS, %		0.000		
LOS, %		0.000		
Старт	Настр.		-⊡ 13:54	

Рис. 10.7 BER тест

В меню статуса теста отображаются поля:

Прошло – время, прошедшее с начала запуска BER теста.

Остал. – время, оставшееся до окончания BER теста.

Rx бит – количество принятых бит.

Rx Ebit – количество принятых бит с ошибками.

BER – отношение числа принятых бит с ошибками к общему числу принятых бит.

LSS – количество секунд с отсутствием синхронизации с тестовой последовательностью.

LOS – количество секунд с отсутствием синхронизации с линией;.

LSS,%% — отношение времени, в течение которого отсутствовала синхронизация с тестовой последовательностью, ко времени от начала теста.

LOS,%% – отношение времени, в течение которого отсутствовала синхронизация с линией, ко времени от начала теста.

10.7.2 Настройки BER теста

В меню Настройки отображаются поля:

Тип послед. — выбор типа последовательности: пользовательская, задаваемая в поле **П.Посл.**, ПСП $2^{11}-1$, $2^{15}-1$, $2^{20}-1$, $2^{23}-1$, $2^{29}-1$, $2^{31}-1$, CRTP.

П.Посл. – 32 бита пользовательской последовательности.

Длина кадра – длина кадров, выраженная в байтах, генерируемых в тесте.

Ед. измерения – выбор единиц измерения, в которых будет

задаваться значение нагрузки: %, бит/с.

Нагрузка – значение нагрузки, выраженное в % или бит/с.

Длительность — временной интервал, заданный в формате «чч:мм:сс», в течение которого проходит тест. Если значение равно нулю, то тест идет бесконечно.

Отступ – значение отступа в байтах после поля преамбула, после которого начинается вставка тестовой последовательности.

10.8 Тест трафика

10.8.1 Описание теста трафика

Тест наиболее трафика является простым И3 всех тестов, реализованных в приборе, с помощью которого можно проверить передаче Подключение способность канала К данных. прибора осуществляется по одной из схем, представленных в пункте 10.6.

Во время теста, в соответствии с выбранной нагрузкой и размером кадров, генерируется трафик в течение заданного времени, и анализируются потери кадров.

Вид меню «**Тест трафика**» показан на рисунке 10.8.

A->B R× T×	1000F Rx T:	× 1000F
Прошло 00:00:12 Остал. 00:00:00		
● Тест успешно пройден.		
Параметр	Кол-во	Коэф
Нагрузка	100%	
Т× кадры	15029626	
R× кадры	15029626	
T× байт	961896064	
Vrt,Мбит∕с	1000	
PDV,HC	32	
Старт На	стр. - □	09:41

Рис. 10.8 Тест трафика

Меню теста содержит две функциональные клавиши:

Старт/Стоп – запуск и остановка теста.

Настр. – доступ к настройкам теста.

В меню статуса теста отображаются поля:

Прошло – время, прошедшее с начала запуска теста трафика.

Остал. – время, оставшееся до окончания теста трафика.

Нагрузка – значение нагрузки генерируемого потока.

Тх кадры – количество переданных кадров.

Rx кадры – количество принятых кадров.

Тх байт – количество переданных байт.

Vrt, Мбит/с — текущая скорость тестового трафика. Счетчик отображает информацию только во время проведения теста.

PDV, **нс** – значение среднего пакетного джиттера.

Потери* – количество потерянных байт, равное разнице между переданным и принятым количеством, отображается в столбце **«Кол-во»**. В столбце **«Коэф.»** отображается коэффициент потерь.

* Примечание: Во время проведения теста значение потерь даже при их отсутствии может показывать величину отличную от нуля, что связано с задержками передачи информации в канале, а также в передающем и приемном буфере.

Runt — количество принятых кадров длиной менее 64 байт с правильной контрольной суммой, отображается в столбце **«Кол-во»**. В столбце **«Коэф.»** отображается коэффициент таких ошибочных кадров.

CRC – количество принятых кадров с ошибочной контрольной суммой, отображается в столбце **«Кол-во»**. В столбце **«Коэф.»** отображается коэффициент таких ошибочных кадров.

Jabber — количество принятых кадров длиной более 1518 байт с неправильной контрольной суммой, отображается в столбце **«Кол-во»**. В столбце **«Коэф.»** отображается коэффициент таких ошибочных кадров.

Ош. кадры – общее количество принятых кадров с ошибками (Runt, Jabber, CRC), отображается в столбце **«Кол-во»**. В столбце **«Коэф.»** отображается коэффициент ошибок.

Pause – общее количество кадров паузы.

После завершения теста на экран прибора выводится одно из возможных сообщений:

- Тест успешно пройден тест пройден и для данной нагрузки все кадры прошли без потерь;
- Ошибки в тесте во время прохождения теста возникли ошибки;
- Превышен уровень потерь тест пройден, но для заданной нагрузки прошли не все кадры.

10.8.2 Настройки теста трафика

Закладка «Заголовок»

Закладка содержит одинаковые поля настроек для всех тестов с генерацией трафика. Описание находится в пункте 10.8.3.

Закладка «Дополнительно»

Тип нагрузки – параметр не используется. В тесте генерируется постоянная нагрузка.

Ед. измерения — выбор единиц измерения в которых будет вводится значение в поле **«Нагрузка»**.

Нагрузка – величина нагрузки.

Длина пакета – длина кадров, выраженная в байтах, генерируемых в тесте.

Длительность — временной интервал, заданный в формате «чч:мм:сс», в течение которого проходит тест. Если значение равно нулю, то тест идет бесконечно.

10.8.3 Закладка «Заголовок» настроек тестов с генерацией трафика

Закладка содержит одинаковые поля настроек для всех тестов с генерацией трафика: Тест трафика, RFC-2544, Пакетный джиттер. Но для каждого теста в память сохраняются индивидуальные настройки.

Настройки скорости соединения, MAC-адреса отправителя, IP-адреса отправителя, параметров VLAN и MPLS измерительного интерфейса осуществляется в меню «Параметры интерфейсов». Описание находится в пункте 10.15.

Уровень 2

ARP-запрос — опция определения МАС-адреса получателя автоматически с помощью ARP запроса по его IP-адресу до проведения теста. При включении данной флажка, поле **«МАС получ.»** пропадает и его значение игнорируется.

МАС получ. – МАС-адрес получателя. Если тестируемый участок сети не содержит маршрутизаторов, МАС-адресом получателя является адрес устройства принимающего, либо заворачивающего тестовые кадры. В противном случае в качестве МАС-адреса получателя устанавливается МАС-адрес ближайшего маршрутизатора.

МАС отпр. — МАС-адрес отправителя, в качестве которого устанавливается адрес интерфейса, с которого генерируется тестовый трафик. Поле отображает значение, настройка которого производится в меню «Параметры интерфейсов».

Уровень 3

При установке флажка «**Уровень 3**», появляется доступ к настройкам полей пакета сетевого уровня.

Автоматический ІР получ. – флажок, при установке которого, при

топологии тестирования А->В и В->А, в качестве IP-адреса получателя подставляется IP-адрес противоположного порта.

ІР получ. – ІР-адрес получателя.

ІР отпр. – ІР-адрес отправителя, в качестве которого устанавливается адрес интерфейса, с которого генерируется тестовый трафик. Поле отображает значение, настройка которого производится в меню «Параметры интерфейсов».

ToS/Precedence — включение/выключение настроек QoS. При включении флажка блокируется установка DSCP, а ее значение игнорируется. Подробное описание полей см. RFC 791. Название битов в ToS байте приведены в Таблице А.1 Приложение А.

Precedence – приоритет кадра задает биты P0-P2 в ToS байте. Может принимать значения от 0 до 7. Соответствия значений и названий приоритетов приведены в Таблице A.2 Приложение A.

ToS — биты T0-T3 в ToS байте. Отображается в двоичной форме и может принимать значения 0000, 0001, 0010, 0100, 1000.

DSCP — включение/выключение настроек QoS. При включении флажка блокируется установка **ToS/Precedence**, а ее значение игнорируется. Название битов в DSCP байте приведены в Таблице А.3 Приложение А. Поле может принимать значение от 0 до 64, и отображает 6 старших бит DS0-DS5 из соответствующего байта заголовка кадра в двоичной форме. Также отображается литерная аббревиатура (подробное описание см. RFC 2474, RFC 2597). Соответствие значений и названий DSCP приведены в Таблицах А.4 и А.5 Приложения А.

Уровень 4

При установке флажка «**Уровень 4**», появляется доступ к настройкам полей пакета транспортного уровня.

UDP отп. – номер порта источника.

UDP пол. – номер порта получателя.

Для установки MAC-адреса отправителя, IP-адреса отправителя, полей VLAN и MPLS необходимо провести настройки в меню «Параметры интерфейсов».

10.9 Методика RFC 2544

10.9.1 Описание теста RFC 2544

RFC 2544 Методика является стандартом ДЛЯ разнопланового тестирования сетей Ethernet. Она описывает сценарий автоматизированной процедуры тестирования Ethernet канала отсутствии рабочего трафика. В сценарии фиксированы ключевые параметры для тестов пропускной способности, задержки распространения кадров, зависимости уровня потерь кадров от 34

загрузки канала и теста определения предельной нагрузки. Каждый тест позволяет проверить определенные параметры, описанные в SLA. Методология тестов определяет размеры кадров, продолжительность испытания и число повторений испытаний.

Прибор MAKC-EM позволяет проведение четырёх основных тестов по методике RFC 2544:

- **Пропускная способность (throughput)**. Оценка максимальной скорости передачи данных, при которой количество тестовых кадров, прошедших через тестируемое устройство или участок сети, числу кадров, отправленных соответствует С тестирующего оборудования. Данный тест предназначен ДЛЯ фиксации сетевых максимальной скорости коммутации ДЛЯ элементов. расположенных в транспортных сетях Ethernet. Минимальное определяемое прибором значение Пропускной способности, выраженное в процентах, определяется по формуле $\frac{L}{2^{26}}$, где Lдлина кадра в байтах.
- Задержка распространения (latency). Анализ временного интервала прохождения кадра от источника к получателю и обратно, в соответствии со схемой измерения «А», представленной на рисунке 10.6.1. При этом величина называется круговой задержкой. При передаче данных с одного порта на второй. в соответствии со схемой измерений «В», представленной на рисунке 10.6.2, измеряется просто задержка передачи. По умолчанию рекомендовано проводить 30 испытаний, по итогам высчитывается средняя задержка.

Примечание: Минимальное измеряемое прибором значение Задержки распространение — 8 нс.

- Зависимость уровня потерь кадров (frame loss rate). Проверка способности участка сети или сетевого устройства поддерживать приложения, работающие в реальном времени (повторная передача невозможна). С помощью данного теста рассчитывается процент кадров, не переданных сетевым элементом при неизменной нагрузке вследствие недостатка аппаратных ресурсов. Важно учитывать, что большой процент потерь кадров вызывает снижение качества сервиса.
- Предельная нагрузка (back-to-back). Тест измеряет временной интервал, за который сетевое устройство справляется с максимальной нагрузкой. Схемы измерений «А» и «В»

представлены на рисунке 10.6.1 и 10.6.2. Применяется большей частью для тестирования таких сетевых устройств, как концентраторы, коммутаторы и маршрутизаторы.

Прибор MAKC-EM поддерживает тестирование по методике RFC 2544 с двух интерфейсов одновременно.

10.9.2 Настройки теста RFC 2544

При нажатии кнопки «**По умол**», происходит возврат всех настроек теста RFC 2544 к значениям по умолчанию.

Закладка «Заголовок»

Закладка содержит одинаковые поля настроек для всех тестов с генерацией трафика. Описание находится в пункте 10.8.3.

Закладка «Кадры»

При тестировании Ethernet-сетей методика RFC 2544 рекомендует осуществлять анализ, используя семь предопределенных размеров кадров: 64, 128, 256, 512, 1024, 1280 и 1518 байт. Эти значения устанавливаются в варианте конфигурации по умолчанию. В приборе можно устанавливать любые другие длины кадров, а также применять расширенный сценарий RFC 2544, при котором используются кадры произвольной длины, включая Jumbo-кадры* длиной от 1519 байт до 9600 байт. Также дополнительно можно установить для тестирования еще один кадр с длиной от 64 до 9600 байт. В строках указываются длины кадров в байтах. Установка галочки разрешает соответствующую конфигурацию кадра.

* Примечание: Некоторые маршрутизаторы не поддерживают Jumboкадры, либо должны быть предварительно сконфигурированы. Ознакомьтесь с документацией конкретного маршрутизатора, чтобы определить возможность его работы с Jumbo-кадрами.

Закладка «Пропускная способность»

Выполнять – установленный флажок разрешает проведение теста «Пропускная способность».

Нагрузка мин — величина нагрузки в процентах, при достижении которой прекращаются измерения теста «Пропускная способность» для каждого размера кадра. При установке значения нуль, тест продолжается до достижения минимально возможной генерируемой нагрузки, указанной в пункте 10.9.1.

Нагрузка макс – величина нагрузки, выраженной в процентах с которой начинается тест «Пропускная способность» для каждого размера

кадра.

Проба – период времени непрерывного выполнения одного испытания теста с фиксированными значениями параметров и длин кадров.

Закладка «Задержка»

Выполнять – установленный флажок разрешает проведение теста «Задержка».

Кол-во проб — количество испытаний в тесте задержка для каждого заданного размера кадра.

Проба — период времени непрерывного выполнения одного испытания теста с фиксированными значениями параметров и длин кадров.

Пользовательские нагрузки — флажок, при установке которого тест «Задержка» проводится с нагрузками, установленными в настройках ниже, в противном случае тест проводится с нагрузкой, измеренной в тесте «Пропускная способность».

Нагрузка — величина нагрузки, выраженная в процентах, с которой проводится тест «Задержка». Для каждого размера кадра можно устанавливать свое значение нагрузки.

Закладка «Потери кадров»

Выполнять – установленный флажок разрешает проведение теста «Потери кадров».

Проба – период времени непрерывного выполнения одного испытания теста с фиксированными значениями параметров и длин кадров.

Шаг – величина нагрузки, выраженная в процентах, на которое будет уменьшено значение нагрузки для каждого следующего испытания при возникновении потерь кадров.

Нач. Нагрузка — начальная нагрузка - величина нагрузки, выраженная в процентах, с которой начинаются измерения теста «Потери кадров».

Кон. Нагрузка – конечная нагрузка - величина нагрузки, выраженная в процентах, до которой уменьшается нагрузка в измерениях теста «Потери кадров». Если на каком-то из испытаний теста потери кадров отсутствуют, дальнейшее понижение нагрузки до величины конечной нагрузки не происходит.

Закладка «Предельная нагрузка»

Выполнять – установленный флажок разрешает проведение теста «Предельная нагрузка».

Минимальное время — минимальное время одного испытания из выборки определяемой параметром «**Кол-во**», для которого тест «Предельная нагрузка» прошел успешно. Вычисляется для каждого размера кадра.

Максимальное время – максимального время одного испытания из выборки определяемой параметром **«Кол-во»**, для которого тест

«Предельная нагрузка» прошел успешно. Вычисляется для каждого размера кадра.

Кол-во – количество испытаний в тесте «Предельная нагрузка» для каждого заданного размера кадра.

Закладка «Дополнительно»

Обучение — время в микросекундах, которое ожидает тестер после отправки обучающего Learning кадра или ARP-запроса до начала передачи тестовых кадров.

Интервал – время в микросекундах, в течение которого тестер ожидает возврата отправленных тестовых кадров из сети.

10.9.3 Статистика теста RFC 2544

Вид меню «RFC 2544» показан на рисунке 10.9.

Меню теста содержит три функциональные клавиши:

Старт/Стоп – запуск и остановка теста.

Настр. – доступ к настройкам теста.

График/Таблица — отображение результатов выбранного теста в графическом или табличном виде.

В процессе проведения теста поля таблицы заполняются автоматически в соответствии с результатами измерений. Таблица содержит следующие общие поля:

Статус — поле отображает текущее состояние теста и может принимать следующие значения:

- Готово тест прошел положительно;
- Жду тест еще не начался;
- Идет этот тест идет в данный момент;
- Стоп тест остановлен;
- Откл. тест с данной длиной кадра отключен;
- Ошибка тест «Пропускная способность» завершился неудачно, т.
 к. были потери при минимальной нагрузке, либо в связи с изменившимся уровнем потерь канала во время проведения теста алгоритм не пришел ни к одному значению нагрузки, при котором отсутствовали потери; тест «Предельная нагрузка» завершился неудачно, т. к. были потери на минимальном временном интервале;
- Нет Сх во время проведения теста пропала или отсутствовала синхронизация линии;
- Нет Тх нет передачи тестового трафика;
- Нет Rx нет приема тестового трафика;
- RxTx количество принятых тестовых кадров больше чем отправленных, что сигнализирует о проблемах сетевого

оборудования, к которому подключен данный измерительный интерфейс прибора.

	Tx 10			R×	T×	1000F
(Потери кадр.УПредельная нагруз.) Пропускная способность(Задержка)						
Пропускн	ная сп	00	онос	стьу.	заде	ржка
Статус	Кадр		%	< \	V L2	
Готово	64	10	0.0	761.	9м6и	т/с
Готово	128	10	0.0	864.	9мби	т/с
Готово	256	10	0.0	927.	5м6и	т/с
Готово	512	10	0.0	962.	4м 6и	т/с
Готово	1024	10	0.0	980.	8мби	т/с
Готово	1280	10	0.0	984.	бмби	т/с
Готово	1518	10	0.0	987.	Омби	т/с√
Стоп	Настр	٠.	Гра	фик	-D 1	3:40

Рис. 10.9 Tecт RFC 2544

При возникновении критических ошибок текущее испытание останавливается, и процесс переходит к следующему тесту.

Кадр – поле отображает длину тестовых кадров в каждом тестовом испытании.

Закладка «Пропускная способность»

«%» — поле в тесте «Пропускная способность», отображает измеренное значение пропускной способности, выраженной в процентах, от максимальной скорости канала, если испытание прошло успешно. В процессе выполнения испытания поле отображает текущую нагрузку, при которой выполняется тест.

V L1 / V L2 — поле в тесте «Пропускная способность» отображает измеренное значение пропускной способности, выраженной в Мбит/с, Кбит/с, либо в бит/с для уровней 1 и 2. В процессе выполнения испытания поле отображает текущую нагрузку, при которой выполняется тест.

Для отображения требуемого уровня необходимо нажать на клавишу «Вниз», а затем клавишами «Влево», «Вправо» можно выбрать уровень 1 или 2. Значение пропускной способности по уровню 2 равно информационной скорости «V L2». Значение максимальной пропускной способности по уровню 2 вычисляется по формуле:

$$T_{\scriptscriptstyle L2} = V_{\scriptscriptstyle f} imes rac{S}{(S+P+SFD+IFG)}$$
 , где

 T_{L2} — пропускная способность по уровню 2;

```
V_f —скорость подключения (1000, 100, 10 Мбит/с); S — длина кадра; P — преамбула (7 бит); SFD — разделитель начала кадра (1 бит); IFG — межкадровый интервал (12 бит).
```

Для канала без потерь, если максимальная пропускная способность по уровню 1 равна скорости подключения, т. е. $T_{L1} = V_f$, пересчет максимальной пропускной способности по уровню 2, T_{L2} для разных длин кадров показано в Таблице А.6 Приложения А.

Закладка «Задержка»

Нагр. – поле в тесте «Задержка» отображает значение нагрузки, выраженной в процентах, на которой было проведено испытание.

Задержка — поле в тесте «Задержка» отображает измеренное усредненное значение задержки, если испытание прошло успешно. В процессе выполнения испытания поле отображает текущее измеренное значение задержки.

Закладка «Потери кадров»

Нагр. – поле в тесте «Потери кадров» отображает значения нагрузок выраженных в процентах, на которых были проведены испытания. Для просмотра требуемого столбца с нагрузкой необходимо нажать на клавишу «Вниз», а затем клавишами «Влево», «Вправо» и выбирать нужный столбец с нагрузкой. При этом в столбце «Потери» отображается величина потерь кадров для выбранной нагрузки. Измерения проводятся до испытания, в котором потерь кадров не будет обнаружено, поэтому в таблице отображаются значения только тех нагрузок, на которых были проведены испытания.

Потери – поле в тесте «Потери кадров» отображает значение потерь кадров, выраженное в процентах для выбранной нагрузки.

Закладка «Предельная нагрузка»

Мин. – поле в тесте «Предельная нагрузка» отображает минимальное значение интервала времени в проведенных испытаниях, на котором устройство справлялось с максимальной нагрузкой.

Макс. — поле в тесте «Предельная нагрузка» отображает максимальное значение интервала времени в проведенных испытаниях, на котором устройство справлялось с максимальной нагрузкой.

10.10 Пакетный джиттер

Пакетный джиттер определяется в RFC-3393 как разница сквозных задержек прохождения двух кадров. Прибор позволяет производить измерение распределения пакетного джиттера в диапазоне от нуля до верхней заданной пользователем границы.

Примечание: Измерение пакетного джиттера является опцией прибора **«04-PDV»**.

10.10.1 Настройки теста Пакетный джиттер

Закладка «Заголовок»

Закладка содержит одинаковые поля настроек для всех тестов с генерацией трафика. Описание находится в пункте 10.8.3.

Закладка «Дополнительно»

Нагрузка — отображает значение нагрузки, выраженной в процентах, на которой проводится испытание.

Длина пакета — длина кадров, генерируемых тестом, выраженная в байтах.

Длительность — временной интервал, заданный в формате «чч:мм:сс», в течение которого проходит тест.

Порог – значение джиттера, выраженное в миллисекундах, которое используется в качестве верхней границы для составления распределения джиттера.

10.10.2 Статистика теста Пакетный джиттер

Вид меню **«Отчет»** в тесте **«Пакетный джиттер»** показан на рисунке 10.10.

Закладка «Отчет»

Закладка отображает общие результаты теста:

Прошло – время, прошедшее с момента запуска теста.

Остал. – время до окончания теста.

Rx. Пакеты:

Всего – количество принятых кадров.

По порядку — количество принятых кадров, пришедших в том же порядке, в котором и были отправлены, выраженных в процентах от общего числа, а также в числовом виде.

Не по поряд — количество принятых кадров, пришедших не в том же порядке, в котором и были отправлены, выраженных в процентах от общего числа, а также в числовом виде.

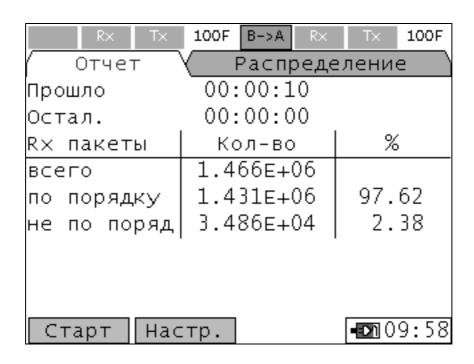


Рис. 10.10 Тест Пакетный джиттер

Закладка «Распределение»

Джиттер – столбец показывает диапазоны десяти интервалов, в которые попадают значения джиттера в принятых кадрах. Интервалы формируются путем деления значения «**Порог**» на десять равных частей.

«%» — столбец показывает количество кадров с джиттером, значение которого попало в данный диапазон, выраженное в процентах от общего числа отправленных кадров.

Примечание: В распределении не учитываются кадры, пришедшие не по порядку, поэтому если такое случается, суммарное значение распределения может быть меньше 100%.

График/Таблица – отображение результатов теста в графическом или табличном виде.

10.11 Многопоточность

Для одновременной генерации трафика содержащего кадры с различными параметрами применяется тест «Многопоточность».

Примечание: Тест **«Многопоточность»** является опцией прибора **«04-MS»**.

10.11.1 Настройки теста Многопоточность

Закладка «Заголовок»

Закладка содержит одинаковые поля настроек для всех тестов с генерацией трафика. Описание находится в пункте 10.8.3.

Выбор потока для настроек заголовка его кадров задается через поле «Поток №Х». Смена номера потока осуществляется перебором по клавише «Ввод», либо клавишами «Влево» и «Вправо».

Закладка «Дополнительно»

Длительность — временной интервал, заданный в формате «чч:мм:сс», в течение которого проходит тест. Если значение равно нулю, то тест идет бесконечно.

«Поток №X» – выбор потока для изменения его настроек.

Тип нагрузки – параметр не используется. В тесте генерируется постоянная нагрузка.

Ед. измерения – выбор единиц измерения, в которых будет вводиться значение в поле **«Нагрузка»** для выбранного потока.

Нагрузка – величина нагрузки для выбранного потока.

Длина пакета – длина кадров, выраженная в байтах, генерируемых в тесте для выбранного потока.

10.11.2 Статистика теста Многопоточность

Вид меню статистики теста «**Многопоточность**» показан на рисунке 10.11.

Меню теста содержит две функциональные клавиши:

Старт/Стоп – запуск и остановка теста.

Настр. – доступ к настройкам теста.

В меню статуса теста отображаются поля:

Прошло – время, прошедшее с начала запуска теста «**Многопоточность**».

Остал. – время, оставшееся до окончания теста «Многопоточность».

Нагрузка – значение нагрузки генерируемого потока.

Тх кадры – количество переданных кадров выбранного потока.

Rx кадры – количество принятых кадров выбранного потока.

Тх байт – количество переданных байт выбранного потока.

A->B R× T×	1000F Rx	Tx 1000F				
Прошло 00:00:12 Остал. 00:00:00						
<	< Поток №l >					
Параметр	Кол-во	Коэф				
Нагрузка	5%					
Т× кадры	751039					
R× кадры	751039					
T× байт	48066496					
Потери	0	0.000				
Задержка	464					
Старт На	стр.	⊅ 13:58				

Рис. 10.11 Тест Многопоточность

Потери* – количество потерянных байт выбранного потока, равное разнице между переданным и принятым количеством, отображается в столбце **«Кол-во»**. В столбце **«Коэф.»** отображается коэффициент потерь.

* **Примечание:** Во время проведения теста значение потерь даже при их отсутствии может показывать величину отличную от нуля, что связано с задержками передачи информации в канале, а также в передающем и приемном буфере.

Задержка – измеренное усредненное значение задержки для выбранного потока, если испытание прошло успешно. В процессе выполнения испытания поле отображает текущее измеренное значение задержки.

10.12 Тестирование временной синхронизации РТР

Стандарт IEEE1588-2008 PTP определяет модель и протокол временной синхронизации в сетях Ethernet. Прибор может быть сконфигурирован как ведомое устройство PTP (PTP-слейв), при этом, соединяясь с доступными ведущими серверами PTP (PTP-мастер) осуществлять временную синхронизацию и измерять параметры по этому протоколу, такие как: количество пакетов, односторонние и средние задержки, пакетный джиттер и другие.

Примечание: Тест **«РТР»** является опцией прибора **«04-РТР»**.

10.12.1 Настройки теста РТР

Меню «Настройки РТР»

Внешняя подстройка часов — флажок для выбора режима подстройки внутренней шкалы времени с помощью высокостабильного сигнала 1PPS, поданного на разъем «TST». В случае, когда синхронизации осуществляется только от внутреннего кварцевого генератора, флажок необходимо снимать.

Unicast – флажок выбора одноадресного режима работы протокола синхронизации PTP с серверами.

Multicast – флажок выбора многоадресного режима работы протокола синхронизации РТР с серверами.

Длительность — временной интервал, заданный в формате «чч:мм:сс», в течение которого проходит тест. Если значение равно нулю, то тест идет бесконечно.

Автоопределение домена — флажок выбора режима, при котором домен определяется автоматически.

Домен – поле выбора домена для ручного режима.

IP PTP Мастер – поле ввода IP-адреса ведущего устройства для одноадресного режима работы. В многоадресном режиме работы поле заблокировано.

После установки требуемых параметров необходимо перейти в меню «РТР Список серверов» по нажатию кнопки «**Выбор**».

Меню «РТР Список серверов»

Меню содержит 10 строк для отображения найденных в сети РТРсерверов. Выбор сервера осуществляется переводом курсора к требуемой строке с информацией о сервере и нажатием кнопки «Готово».

10.12.2 Статистика теста РТР

Вид меню «РТР» показан на рисунке 10.12.

A->B R× T× 1000F	R× T× 1000F		
/ Информ. <u>\ Стати</u>	іст. 🛚 Измерения 🖯		
Параметр	Значение		
Интерв. сообщен	0		
IP	192.168.0.100		
ID	00-16-C0-FF-		
	FE-04-ED-92		
Номер порта	1		
Домен	1		
РТР версия	2		
Старт Настр.	Выбор •№ 06:06		

Рис. 10.12 Временная синхронизация РТР

В меню **«РТР»** отображаются три закладки: **«Информация»**, **«Статистика»**, **«Измерения»**.

Закладка «Информация»

В закладке отображаются параметры выбранного сервера РТР:

Интервал сообщ. – интервал между сообщениями Announce.

IP адрес – IP адрес сервера РТР.

ID – уникальный 64-битный идентификатор сервера PTP, отображается в двух строчках.

Номер порта – см. IEEE1588 РТР.

Домен – домен, в который входит ведущее устройство РТР.

Версия РТР – версия протокола, может принимать значения 1, либо 2.

Класс часов – параметр, определяющий качественное технологическое соответствие ведущего устройства PTP.

Точность часов – параметр определяет минимальный интервал времени, с точностью которого можно обеспечить измерение времени. Используется для нахождения наилучшего из найденных РТР мастера для алгоритма ВМСА.

Поставщик врем. – см. IEEE1588 РТР.

Приоритет 1 – см. IEEE1588 PTP.

Приоритет 2 – см. IEEE1588 PTP.

Закладка «Статистика»

В закладке в графе таблицы **«Значение»** отображаются суммарные счетчики пактов протокола PTP на приеме и передаче, а также счетчики по отдельным сообщениям.

Rx кадры – все принятые от сервера пакеты протокола.

Announce – принятые пакеты «Объявления» от сервера РТР.

Sync – принятые пакеты «Синхронизации» от сервера РТР.

Follow up – принятые пакеты от сервера PTP, содержащие первую метку времени протокола.

Delay Response — принятые пакеты от сервера РТР, содержащие третью метку времени протокола.

Тх кадры – все отправленные серверу РТР пакеты протокола.

Delay Request — отправленные серверу РТР пакеты, содержащие вторую метку времени протокола.

Закладка «Измерения»

В закладке отображаются значения параметров, измеренных по протоколу РТР:

Прошло – время, прошедшее с начала запуска теста «РТР».

Остал. – время, оставшееся до окончания теста «РТР».

Tms – задержка между ведущим и ведомым устройством PTP, отображает разницу между временем приема сообщения «Sync» ведомым устройством PTP и временем отправки этого сообщения.

Tsm – задержка между ведомым и ведущим устройством PTP, отображает разницу между временем приема сообщения «Delay Request» ведущим устройством PTP и временем отправки этого сообщения ведомым.

Т среднее — средняя задержка между ведущим и ведомым устройством РТР.

Расхождение — расхождение шкал времени между ведущим и ведомым устройством РТР после первой синхронизации.

Sync PDV – пакетный джиттер, вычисляемый по сообщениям «Sync».

10.13 Удаленное управление ОАМ

С помощью функций протокола ОАМ прибор МАКС-ЕМ позволяет отображать информацию о поддерживаемых режимах работы удаленной стороны, а также включать режим шлейфа в удаленной точке.

Вид меню «ОАМ» показан на рисунке 10.13. Оно содержит настройки:

Режим ОАМ — выбор режима ОАМ для данного порта может принимать значения:

Активный – порт может отвечать на ОАМ команды от удаленных <u>устройств, периодически посылает команды ОАМ обнаружения</u>

удаленных устройств (OAM discovery), а также может включать шлейф первого уровня на удаленном устройстве.

Пассивный — порт может только отвечать на ОАМ команды от удаленных устройств;

Выключен – функция выключена.

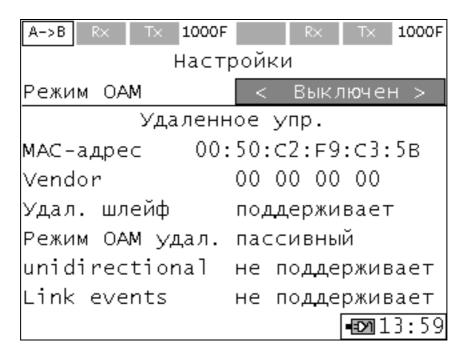


Рис. 10.13 Удаленное управление ОАМ

Закладка «**Удаленное упр.**» отображает режимы работы и настройки удаленной стороны, содержит следующие поля:

МАС-адрес – МАС-адрес обнаруженного удаленного устройства.

Vendor – уникальный идентификатор удаленного устройства.

Удал. шлейф – поддержка включения функции шлейфа удаленным устройством.

Режим ОАМ удал.— режим ОАМ удаленного устройства. Состояния аналогичны нашему описанию выше.

Unidirectional – поддержка однонаправленного соединения удаленного устройства.

Link events — поддержка уведомлений об ошибках соединения удаленного устройства.

Если удаленное устройство поддерживает функцию включения шлейфа, его можно включить или выключить с помощью кнопок «Старт» и «Стоп».

Примечание: Перед проведением тестов с генерацией трафика функцию ОАМ на порту, который будет генерировать тестовый трафик, необходимо выключать или переводить в пассивный режим работы.

10.14 Шлейф

Прибор подключается к сети или сетевому устройству по схеме, представленной на рисунке 10.14. Прибор позволяет образовывать одновременно два независимых шлейфа на обоих портах, либо шлейф на одном порту, на другом любую другую возможную функцию.

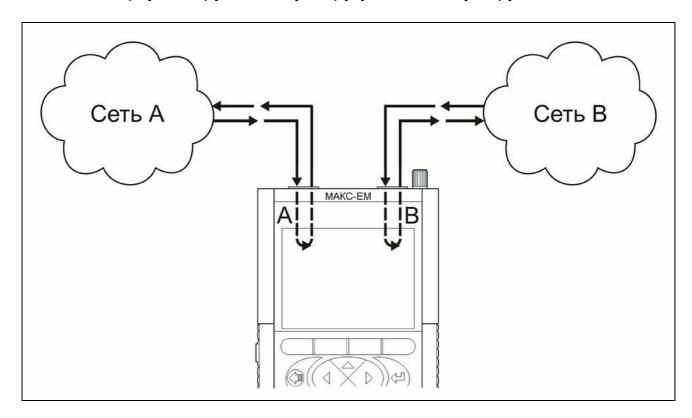


Рис. 10.14 Схема подключения в режиме Шлейф

10.14.1 Настройка шлейфа, закладка «Общие»

Функция «**Шлейф**» позволяет выполнять тестирование сети без изменения её настроек, которое может осуществляться на разных уровнях модели OSI:

- на физическом уровне: все входящие кадры заворачиваются в обратном направлении без изменения структуры.
- на канальном уровне: входящие кадры заворачиваются в обратном направлении. При завороте может быть включен алгоритм замены МАС-адресов источника и получателя, а также алгоритм перестановки МАС-адресов. Кадры, содержащие одинаковые значения полей МАС-адреса источника и получателя, а также кадры ОАМ и запросы ARP, кадры групповой передачи (Multicast) фильтруются жесткими фильтрами при приеме и не заворачиваются в обратном направлении.
- на сетевом уровне: входящие кадры заворачиваются в обратном

направлении. При завороте может быть включен алгоритм замены IP-адресов источника и получателя, или алгоритм перестановки IP-адресов. При включении шлейфа сетевого уровня установки для алгоритмов перестановки или замены полей кадра, соответствующих канальному уровню, также являются действительными.

Статус — поле включение и выбора уровня, на котором будет осуществляться функция **«Шлейф»**. Смена режима осуществляется перебором по клавиши **«Ввод»**, либо клавишами **«Влево»** и **«Вправо»**. Поле может принимать значения:

Выключен – выключение функции «Шлейф».

Уровень 1 – включение физического шлейфа.

Уровень 2 – включение канального шлейфа.

Уровень 3 – включение сетевого шлейфа.

Уровень 4 — включение транспортного шлейфа.

Смена режима происходит по нажатию кнопки «Задать».

При включенном шлейфе любого уровня настройки уровней шлейфа блокируются и доступны только для просмотра.

10.14.2 Настройка шлейфа второго уровня

При включении шлейфа второго уровня автоматически делается перестановка полей кадра МАС-адрес источника и получателя между собой, если не установлен флажок «Замена МАС».

Замена МАС – при установке флажка напротив полей «Отправитель» и «Получатель» происходит замена МАС-адресов источника и получателя в принятых кадрах на МАС-адреса источника и получателя, заданные в соответствующих полях.

Отправитель – задаёт новый МАС-адрес отправителя.

Получатель – задаёт новый МАС-адрес получателя.

Замена VLAN ID – флажок включения замены идентификатора VLAN ID. Поле VLAN ID в принятом кадре заменяется на значение из соответствующего поля.

Замена Приоритет – замена приоритета передаваемого трафика (для стандарта IEEE 802.1p). Поле PCP в принятом кадре заменяется на значение из соответствующего поля.

10.14.3 Настройка шлейфа третьего уровня

При включении шлейфа третьего уровня автоматически делается перестановка полей кадра IP-адрес источника и получателя между собой, если не установлены флажки «Замена IP».

Замена IP – при установке флажка напротив полей «Отправитель» и «Получатель» происходит замена IP-адресов источника и получателя в принятых кадрах на IP-адреса источника и получателя, заданные в соответствующих полях.

Отправитель – задает новый ІР-адрес отправителя.

Получатель – задает новый ІР-адрес получателя.

Замена ToS/Precedence — установка флажка включает замену ToS байта параметров QoS. При включении флажка блокируется установка **DSCP**, а ее значение игнорируется. Подробное описание полей см. RFC 791. Название битов в ToS байте приведены в Таблице A.1 Приложение A.

ToS — поле задает новое значение битов T0-T3 в ToS байте. Отображается в двоичной форме и может принимать значения 0000, 0001, 0010, 0100, 1000.

Precedence – задает новое значение биты P0-P2 в ToS байте. Может принимать значения от 0 до 7. Соответствия значений и названий приоритетов приведены в Таблице A.2 Приложение A.

Замена DSCP — установка флажка включает замену DSCP байта параметров QoS. При включении флажка блокируется установка ToS/Precedence, а ее значение игнорируется. Название битов в DSCP байте приведены в Таблице A.3 Приложение A. Поле может принимать значение от 0 до 64, и отображает 6 старших бит DS0-DS5 из соответствующего байта заголовка кадра в двоичной форме. Также отображается литерная аббревиатура (Подробное описание см. RFC 2474, RFC 2597). Соответствие значений и названий DSCP приведены в Таблицах A.4 и A.5 Приложения A.

10.15 Транзит

В режиме «Транзит» можно контролировать и анализировать трафик оптического и электрического Ethernet. Прибор МАКС-ЕМ необходимо подключить в разрыв между двумя участками сети, либо сетевыми устройствами как показано на рисунке 10.15. При этом трафик, принятый с порта А, перенаправляется в порт В, а с порта В — в порт А. Режим «Транзит» можно использовать также для преобразования одного стандарта Ethernet в другой. Так можно транслировать оптический 1000BASE-X Ethernet в электрический 1000 BASE-T Ethernet и другие.

Статистику по принятым и переданным кадрами можно просматривать в меню «Статистика». Если скорости соединения двух портов различаются, допускаются потери кадров при передаче с порта с большей скоростью соединения в порт с меньшей скоростью.

Скорости на приеме и на передаче для обоих портов в режиме «**Транзит**» можно просматривать в меню «**Статистика**». Включение функции «**Транзит**» происходит при установленном флажке «**Транзит**» при входе в одноименный пункт меню (см. Рис. 10.2).

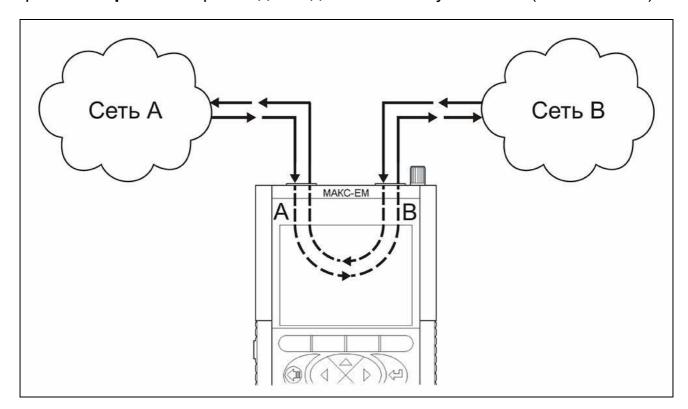


Рис. 10.15 Схема подключения в режиме Транзит

10.16 Статистика

Прибор накапливает статистику по принятым и отправленным кадрам с разделением информации по уровням, по типам кадров, по размерам кадров, а также ошибочным кадрам. Вид меню «Статистика» показан на рисунке 10.16.

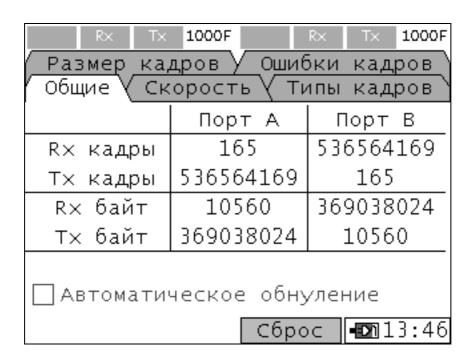


Рис. 10.16 Статистика

10.16.1 Параметры меню «Статистика»

Статистика «Общие»

В полях отображаются количество принятых и полученных данных по портам A и B, выраженное в байтах и в кадрах.

Rx кадры – число принятых кадров.

Тх кадры – число переданных кадров.

Rx, байт – число принятых байтов.

Тх, байт – число переданных байтов.

Автоматическое обнуление — при установленном флажке осуществляется сброс всей статистики при каждом новом запуске любого теста с генерацией трафика («RFC 2544», «Тест трафика», «Пакетный джиттер», «Многопоточность», «ВЕRТ»).

Статистика скорости

- **V L1** скорость на приеме и на передаче для обоих портов по первому уровню, выраженная в бит/с.
- **V L2** скорость на приеме и на передаче для обоих портов по второму уровню, выраженная в бит/с. Значение скорости можно интерпретировать как мгновенные значения информационных скоростей приема и передачи данных без учета преамбулы, межкадрового интервала и разделителя начала кадра.

Максимальная скорость второго уровня на интерфейсах вычисляется по формуле:

$$V_i = V_f imes rac{S}{(S + P + SFD + IFG)}$$
, где

 V_i — информационная скорость;

 V_f – скорость подключения (1000, 100, 10 Мбит/с);

S - длина кадра;

P — преамбула (7 бит);

SFD — разделитель начала кадра (1 бит);

IFG — межкадровый интервал (12 бит).

V L3 – скорость на приеме и на передаче для обоих портов по третьему уровню, выраженная в бит/с.

Статистика по типам кадров

Broadcast – кадры с широковещательной адресацией.

Multicast – кадры с групповой адресацией.

Unicast – кадры с единичной адресацией.

Pause – кадры паузы.

Rx – число принятых кадров.

Тх – число переданных кадров.

Статистика по размерам кадров

Размер – размер кадра (указывается в байтах).

Rx – число принятых кадров.

Тх – число переданных кадров.

Для смены порта, по которому отображается статистика, необходимо войти во вкладку с помощью клавиши **«Ввод»** и выбрать номер порта клавишами **«Влево»** или **«Вправо»**.

Ошибки кадров

CRC – количество принятых кадров с ошибочной контрольной суммой.

Runt — количество принятых кадров длиной менее 64 байт с правильной контрольной суммой.

Jabber – количество принятых кадров длиной более 1518 байт с неправильной контрольной суммой.

10.17 Память

Прибор имеет встроенную энергонезависимую память на 30 записей для сохранения результатов измерений. Вид меню «Память» показан на рисунке 10.17.

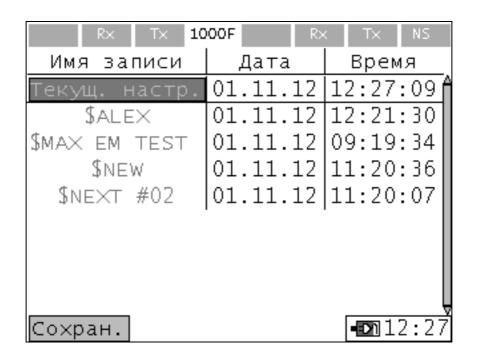


Рис. 10.17 Память

Для сохранения текущих настроек и результатов проведенных тестов необходимо перевести курсор на строку «Текущ. настр.» и нажать клавишу «Сохран.». После чего можно ввести имя записи и нажать клавишу «Сохран.».

Для загрузки или удаления ранее сохраненных записей необходимо перевести курсор на строчку, содержащую требуемую запись и нажать клавишу «Загруз.» или «Удалить» соответственно*.

* **Примечание**: При включенных тестах загрузка настроек и результатов из памяти не возможна. Необходимо сначала остановить все тесты.

10.18 Параметры интерфейсов

Меню «Параметры интерфейсов» отображает настройки для измерительных портов A, B и порта удаленного управления LAN.

Вид меню «Параметры интерфейсов» показан на рисунке 10.18.1.

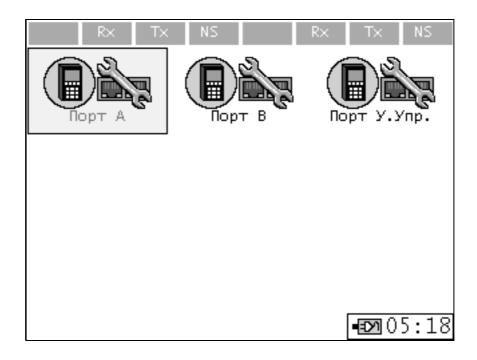


Рис. 10.18.1 Параметры интерфейсов

Из разделов меню «Параметры интерфейсов» открываются меню настроек для каждого из портов.

Вид меню настроек представлен на рисунке 10.18.2.

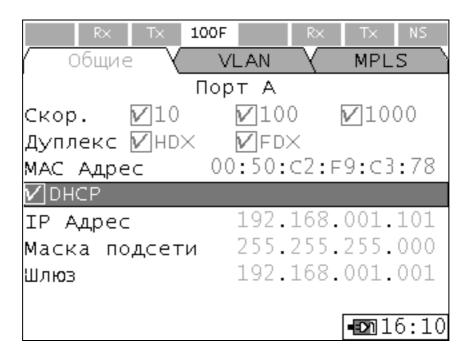


Рис. 10.18.2 Параметры интерфейсов. Общие

Меню параметры интерфейсов каждого из портов содержит три закладки: «Общие», «VLAN», «MPLS».

Закладка «Общие»

Скорость – выбор скорости передачи данных. При установке флажков «10», «100», «1000», соединение конфигурируется автоматически на максимальной возможной из выбранных скоростей. При установке только одного флажка соединение конфигурируется принудительно для выбранной скорости*.

Дуплекс — выбор режима соединения полудуплекс (half duplex), полный дуплекс (full duplex), при установке соответствующих флажков **«HDX»** или **«FDX»**, либо автоматически, при одновременной установке обоих флажков.

MAC Адрес — MAC-адрес настраиваемого порта**: A, B или LAN; по умолчанию в приборе установлены индивидуальные MAC-адреса для всех портов из фиксированного за производителем диапазона адресов, но любой адрес может быть изменен вручную.

DHCP*** – при включенной функции, IP-адрес порта, маска подсети и другие параметры будут получены автоматически от сервера DHCP.

IP Адрес – IP-адрес подсети;

Маска подсети – маска подсети;

Шлюз – шлюз подсети.

- * **Примечание:** При оптическом соединении через SFP-модули выбор скорости передачи всегда осуществляется автоматически на 1000 Мбит/с вне зависимости от установленных галок.
- ** Примечание: Новое значение МАС-адреса порта вступает в силу только после перезагрузки прибора.
- *** Примечание: При включенной функции Шлейф на данном интерфейсе протокол DHCP работать не будет. Необходимо предварительно выключить шлейф и получить настройки по DHCP.

Закладка «VLAN»

VLAN**** – включение/выключение параметров VLAN (в соответствии со стандартами IEEE 802.1q, IEEE 802.1p). Может принимать значение равное количеству VLAN тегов от 0 до 3, которые необходимо вставить в кадр. При значении равном 0, трафик генерируется без VLAN.

TPID – идентификатор протокола тегирования.

- **PCP** приоритет передаваемого трафика (для стандарта IEEE 802.1p).
- **VID** идентификатор VLAN длиной 4 байта, можно устанавливать значения в диапазоне 0-4095.
- **** **Примечание:** При включенных VLAN, из-за увеличения длины полей заполнения кадров минимальные длины будут составлять 68 байт

для одного VLAN-тега, 72 байта — для двух, 76 байт — для трех. При меньших длинах кадров тест выдаст сообщение об ошибке. Тест RFC2544 со значениями длин кадров по умолчанию (с длиной кадров от 64 байт) запускаться не будет.

Закладка «MPLS»

MPLS – включение/выключение параметров MPLS. Может принимать значение равное количеству MPLS меток от 0 до 3. При значении, равном 0, трафик генерируется без MPLS меток.

Value – значение метки.

QoS – класс обслуживания кадра.

TTL – время жизни кадра.

Примечание: Управление настройками MPLS является опцией прибора **«04-MPLS»**.

10.19 Удаленное управление

Удаленное управление прибором МАКС-ЕМ позволяет производить настройки параметров прибора, настройки тестов, запускать тесты, просматривать и сохранять результаты тестов. Для удаленного управления в приборе предусмотрены порты USB и LAN.

10.19.1 Удаленное управление по порту USB

Для удаленного управления в приборе MAKC-EM имеется USB порт (см. рисунок 4.1.4). Для организации интерфейса между прибором и ПК необходимо установить пакет драйверов для эмуляции виртуального СОМ порта **CP210x_VCP_Win2K_XP_S2K3.exe**. После установки драйвера необходимо подключить прибор к ПК через кабель USB, после чего в диспетчере устройств должен появиться еще один СОМ порт.

10.19.2 Удаленное управление по Ethernet

Удаленное управление по Ethernet является опцией прибора «04-RC».

Для управления прибором необходимо подключить его к сети патчкордом к разъему LAN (см. рисунок 4.1.4). Необходимо произвести настройки третьего Ethernet-интерфейса служащего для удаленного управления в меню прибора «Параметры интерфейсов», далее «Порт У. Упр.» (см. рисунок 10.18.1).

Примечание: В удаленном управлении по Ethernet отключена функция «Снимок экрана».

10.19.3 Работа с программой удаленного управления

Необходимо запустить программу EMRemote.exe. Вид диалогового окна программы показан на рисунке 10.19. Программа является единой для приборов MAKC-EM и MAKC-EMB, но управлять единовременно может только одним прибором.

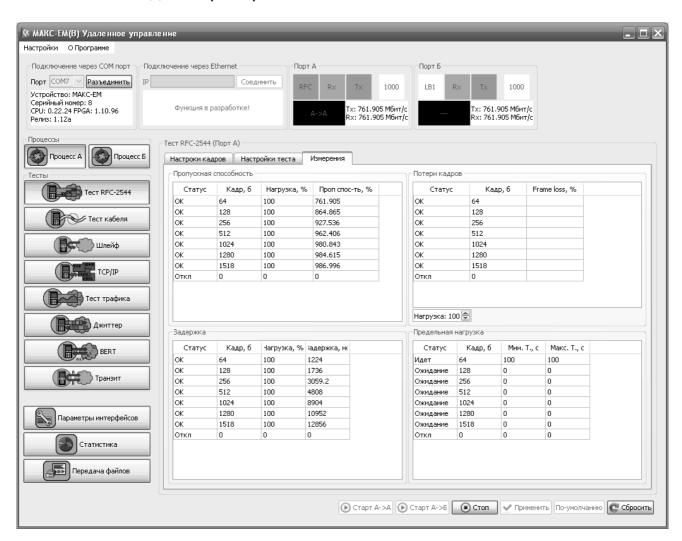


Рис. 10.19 Программа удаленного управления по порту USB

Для управления по порту USB в выпадающем списке «Порт» необходимо выбрать номер виртуального СОМ порта, по которому подключен интерфейс прибора. Для установления связи необходимо нажать кнопку «Соединить».

Для управления по порту Ethernet в области программы «Подключение через Ethernet» в поле ввода «IP» ввести IP-адрес третьего Ethernet-интерфейса прибора и нажать кнопку «Соединить». Управление прибором по Ethernet аналогично управлению по USB.

В случае успешного соединения в строке состояния должна появиться надпись о типе подключенного устройства, также появятся значения версий прошивок CPU, FPGA, номер релиза ПО и серийный номер прибора, а закладки измерительных функций должны стать активными. Если требуется разорвать связь, например, для обновления микрокодов прибора или подключения другого прибора, необходимо нажать на кнопку «Разъединить».

Функционал удаленного управления аналогичен функционалу прибора.

Состояние измерительных портов отображается в верхней статусной группе «Порт А» и «Порт В». Значения обновляются автоматически с частотой раз в секунду. Группа содержит четыре индикатора: Test, Rx, Tx, Link (слева направо). В зависимости от режимов работы прибора индикаторы могут показывать различную статусную информацию. Значения и подсветка индикаторов соответствует значениям светодиодных индикаторов прибора и подписям к ним (см. п. 4.1.1).

Индикаторы **Test** указывают на то, что порт занят выполнением теста. Подписи индикатора Test могут быть следующего содержания:

BERT – порт занят приемом или передачей трафика BER теста;

САВ – порт занят передачей и приемом сигналов теста кабеля;

DNS – порт занят передачей и приемом кадров теста **DNS**;

JIT – порт занят приемом или передачей трафика теста «**Пакетный джиттер**»;

LB1 – включен режим «Шлейф» первого уровня;

LB2 – включен режим «Шлейф» второго уровня;

LB3 – включен режим «Шлейф» третьего уровня;

LB4 – включен режим «Шлейф» четвертого уровня;

MS — порт занят передачей и приемом трафика теста «**Многопоточность**»;

ОАМ – включен активный режим ОАМ;

PING – порт занят передачей и приемом трафика теста «Эхо-запрос»;

RFC - порт занят приемом или передачей трафика теста «RFC 2544»;

THRU – выбрано меню «Транзит», либо включен режим «Транзит»;

TRT – порт занят передачей и приемом кадров теста «Маршрут»;

TRAF – порт занят приемом или передачей данных теста трафика.

PTP – порт занят приемом или передачей данных теста «PTP».

Индикатор **Rx** отображает состояние приёма данных. Подсветка индикатора **Rx** зеленым цветом сообщает о том, что порт задействован в приеме трафика.

Индикатор **Тх** отображает передачу данных. Подсветка подписи к индикатору **Тх** желтым цветом сообщает о том, что порт задействован в

передаче трафика.

Индикатор **Link** отображает состояние соединения. Подписи к индикатору **Link** отображают значение скорости передачи и режима дуплекса: **1000** для 1000BASE-T и 1000BASE-X, **100** для 100BASE-T, **10** для 10BASE-T, **NS** — синхронизация отсутствует. Символ «**H**» обозначает режим полудуплекс, символ «**F**» обозначает режим полный дуплекс.

Ниже индикаторов отображаются значения скоростей приема интерфейсах в единицах данных на бит/с. передачи интерпретировать параметров МОЖНО как мгновенные значения информационных скоростей приема и передачи данных без учета преамбулы, межкадрового интервала и разделителя начала кадра.

Кнопки «Процесс А» и «Процесс В» переключают выбор порта для которого отображается меню.

Тесты и функции прибора вынесены в функциональные закладки, находящиеся в левой боковой панели. Функциональные закладки:

- «Тест RFC-2544»;
- «Тест многопоточности»;
- «Тест кабеля»:
- «Шлейф»;
- «TCP/IP»:
- «Тест трафика»;
- «Пакетный джиттер»;
- «BERT»;
- «OAM»;
- «Транзит»;
- «PTP»:
- «Настройки»;
- «Статистика»;
- «Передача файлов».

Настройки всех тестов и функций аналогичны тестам и функциям, реализованным с помощью экранного меню прибора (см. соответствующие пункты 10.4 - 10.19).

После изменения значений любых настроек необходимо нажимать кнопки «Применить», при этом новые значения передаются в прибор. Если необходимо вернуть настройки к значениям, сохраненным в приборе, нужно нажать кнопку «Сбросить». Значения результатов тестов и статистическая информация обновляются автоматически с частотой раз в секунду. Запуск тестов осуществляется при нажатии кнопки «Старт», «Старт А->А», «Старт А->В», «Старт В->А», «Старт В->В» в зависимости от возможных и требуемых топологий прохождения теста.

10.19.4 Передача файлов отчетов

Для сохранения отчетов на ПК необходимо в программе удаленного управления перейти в закладку «Передача файлов», нажать кнопку «Обновить» и выбрать ранее сохраненные файлы в памяти пробора, выбрать флажками желаемые отчеты тестов «BERT», «RFC-2544», «Маршрут», «Пакетный джиттер», «Эхо-запрос», «Тест трафика», «Тест многопоточности», «РТР» и скачать файл с помощью кнопки «Скачать». При этом происходит сохранение отчетов в формате *.pdf на ПК. В выбранной директории появится отдельная папка, имеющая такое же имя, как и файл на приборе. Ранее сохраненные файлы в памяти пробора можно удалить из программы удаленного управления с помощью кнопки «Удалить».

Снимок экрана

Для снимка экрана прибора необходимо нажать на кнопку «Снимок экрана», расположенной в закладке «Передача файлов», после чего появится диалоговое окно для сохранения файла в формате *.png.

10.20 Настройки и опции прибора

10.20.1 Общие настройки

Вид меню **«Настройки прибора»** закладка **«Общие»** показан на рисунке 10.20.

Закладка «**Общие**» содержит следующие поля:

Язык – выбор языка интерфейса: Русский, English.

Аккумулятор — отображает значение напряжения в вольтах на аккумуляторной батарее (нормальный режим работы анализатора — напряжение не ниже 6 В).

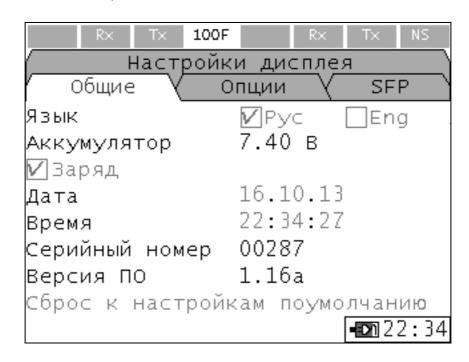


Рис. 10.20 Настройки прибора

Заряд – при установленном флажке происходит заряд аккумуляторов. Установка флажка при подключенном внешнем источнике питания может осуществляться как вручную, так и автоматически при достижении уровня нижнего порога заряда аккумуляторов. Снятие флажка также можно произвести вручную, в противном случае автоматическое снятие будет произведено после 14 часов заряда. Прибор заряжается во включенном состоянии.

Дата – установка и отображение текущей даты.

Время – установка и отображение текущего времени.

Серийный номер – отображает серийный номер прибора.

Версия ПО — отображает версию встроенного программного обеспечения прибора (номер релиза ПО).

Сброс к настройкам по умолчанию — функция возврата прибора к заводским настройкам во всех меню. При наведении курсором на поле появляется кнопка «Сброс», которую необходимо нажать.

10.20.2 Настройки дисплея

Подсветка – настройка подсветки экрана;

Яркость – настройка яркости изображения;

Контрастность – настройка контрастности изображения.

10.20.3 SFP

На экране отображается информация о SFP модулях, вставленных в порты A или B. Для переключения между портами необходимо перейти курсором к строчку «Информация об SFP модуле A(B)» и клавишами «Вправо» и «Влево» выбрать порт A или B.

В меню отображается следующая информация:

Производитель – производитель SFP модуля. При вынутом модуле поле отображает значение «недоступно».

Серийный номер модуля — серийный номер модуля по номенклатуре производителя.

Ревизия – версия модуля по номенклатуре производителя.

Дата – дата производства.

Номер партии.

Температура – текущее значение температуры внутри модуля*.

Вх. мощность — измеренное значение входной мощности оптического сигнала*.

*Примечание: Не все SFP модули предоставляют достоверную информацию по данным полям. Необходимо уточнять у производителя модулей.

10.20.4 Опции

Дополнительная функциональность прибора МАКС-ЕМ доступна при заказе соответствующих опций. Чтобы включить одну или несколько опций необходимо получить ключ активации опций, который является индивидуальным для каждого существующего прибора МАКС-ЕМ.

Экран содержит поле:

Ключ – поле, в которое необходимо ввести ключ, открывающий опции прибора. Если длина ключа меньше количества знаков поля, число необходимо ввести в младшие разряды. После ввода ключа необходимо нажать на кнопку «**Актив.**». После активации поле «**Ключ**» отображает нулевое значение.

Примечание: Если в результате неправильных действий или еще каким-либо способом ранее активированные опции сбросились, необходимо связаться со службой поддержки изготовителя для получения ключа.

Если активация опции устройства прошла успешно, в программе удаленного управления разблокируются кнопки, а в меню прибора разблокируются пункты, отвечающие за соответствующие функции, ниже поля «Ключ» отобразятся названия активированных опций. Значение поля «Ключ» после активации отображается нулями. Перечень названий существующих опций прибора МАКС-ЕМ представлен в Таблице 10.20.

Таблица 10.20

Название Опции	Описание
04-RC	Удаленное управление по Ethernet
04-PDV	Измерение пакетного джиттера
04-MPLS	Настройки полей MPLS пакета
04-MS	Многопоточность
04-PTP	Измерение временной синхронизации PTP IEEE1588

11 Методика поверки

Настоящая методика устанавливает методы и средства первичной и периодической поверок тестеров-анализаторов пакетных сетей МАКС-ЕМ, далее тестеров, выпускаемых ЗАО НПП «КОМЕТЕХ», г. Санкт-Петербург, находящихся в эксплуатации, а также после хранения и ремонта.

Межповерочный интервал – 2 года.

11.1 Операции поверки

Техническое обслуживание прибора сводится к периодическому внешнему осмотру блока питания прибора и шнуров с целью содержания в исправном и чистом состоянии.

11.1.1 При проведении поверки должны быть выполнены следующие операции поверки, указанные в Таблице 11.1.

Таблица 11.1

Nº		Пункт	Проведение операции при		
	Наименование операции	методики	первичной поверке	периодической поверке	
1	Внешний осмотр	11.7.1	Да	Да	
2	Опробование	11.7.2	Да	Да	
3	Определение погрешности тактовой частоты	11.7.3	Да	Да	
4	Определение погрешности по частоте при передаче полезной информации	11.7.4	Да	Нет	
5	Определение погрешности измерения количества информации	11.7.5	Да	Да	

11.2 Средства поверки

11.2.1 При проведении поверки должны применяться средства поверки, указанные в Таблице 11.2.

Номер пункта методики поверки	Наименование и тип средства поверки, метрологические характеристики
11.7.3, 11.7.4,	Частотомер электронно-счетный Ч3-63/1:
11.7.5	0,1 Гц — 1500 МГц, (0,03—10) В,
	±5·10 ⁻⁷ f±1 ед. счета; ≥1 МОм

- **11.2.2** Допускается использовать другие средства поверки с аналогичными метрологическими характеристиками.
- 11.2.3 Средства поверки должны быть исправны, поверены и иметь свидетельства о поверке.

11.3 Требования к квалификации

Поверка должна выполняться лицами, аттестованными в качестве поверителей радиотехнических величин и изучившими настоящую методику и руководства по эксплуатации тестера и средств поверки.

11.4 Требования безопасности

При поверке должны выполняться меры безопасности, указанные в руководствах и инструкциях по эксплуатации поверяемого тестера и средств поверки.

11.5 Условия поверки

- **11.5.1** При проведении поверки должны соблюдаться следующие условия:
 - температура окружающей среды (20±5)°C;
 - относительная влажность воздуха (65±15)%;
 - атмосферное давление (100±8)кПа;
 - напряжение сети питания (220±11)В;
 - частота промышленной сети (50±0,5)Гц.

11.6 Подготовка к поверке

- **11.6.1** Перед проведением поверки следует проверить наличие эксплуатационной документации и срок действия свидетельств о поверке на средства поверки.
- **11.6.2** Включить средства поверки и прогреть их в течение времени, указанного в инструкции по эксплуатации.

11.7 Проведение поверки

11.7.1 Внешний осмотр

Визуальным осмотром проверяют соответствие изделий технической документации в части комплектности, маркировки и упаковки. Также проверяют отсутствие видимых повреждений, целостность соединительных кабелей, зажимов и разъемов.

11.7.2 Опробование

Опробование проводят после ознакомления с руководством по эксплуатации. Проверяют возможность включения тестера и его работоспособность, а также состояния заряда батареи и работы с использованием адаптера/зарядного устройства от сети переменного тока.

При проведении опробования тестера проверяют его функционирование заряженных аккумуляторов. В OT случае необходимости производят зарядку аккумуляторов от сетевого адаптера питания, входящего в комплект тестера. Проверяют возможность выбора параметров интерфейса, общих настроек, установки настроек процесса тестирования, тестирования кабеля и работоспособность в основных режимах в следующей последовательности.

- 11.7.2.1 Проверяемый прибор МАКС-ЕМ соединяют портом А с портом В. В меню «Параметры интерфейсов» и настраивают измерительные интерфейсы с параметрами заданными вручную: ІР-адрес порта А – 192.168.0.1, IP-адрес порта B – 192.168.0.2, MAC-адрес порта A – 00:11:22:33:44:55, MAC-адрес порта B - 00:11:22:33:44:54, VLAN - 0, скорость интерфейса 1000 Мб/с для обоих измерительных портов. Выбирают меню «Процесс В» – «Шлейф» и устанавливают уровень 1. Далее выбирают меню «Процесс A» – «Терминал A>>A» – «RFC 2544» и настраивают тест пропускной способности по методике RFC 2544 с установками по умолчанию. В настройках теста в качестве ІР-адреса получателя указывают ІР-адрес порта В, а также устанавливают флажок MAC получателя». Остальные «Автоматический тесты выключают. Запускают тест RFC 2544 по кнопке «Старт». Наблюдают успешное прохождение теста на разных длинах кадров на физическом уровне.
- 11.7.2.2 Проверяемый прибор МАКС-ЕМ соединяют портом A с портом B. На проверяемом приборе выбирают меню «Процесс В» «Шлейф» и устанавливают уровень 2. Далее выбирают меню «Процесс А» «Терминал A>>A» «RFC 2544» и запускают тест пропускной

способности из пакета тестов RFC 2544 аналогично п. 11.7.2.1. Наблюдают успешное прохождение теста на разных длинах кадров на канальном уровне. Аналогично задавая уровень 3 шлейфа, проверяют прохождение теста на сетевом уровне.

- 11.7.2.3 Проверяемый прибор МАКС-ЕМ соединяют портом A с портом B. На проверяемом приборе выбирают меню «Процесс В» «Шлейф» и устанавливают уровень 3. Далее выбирают меню «Процесс А» «Терминал А>>А» «Тест трафика» с настройками: нагрузка 100%, длина кадра 64 байта, длительность теста 10 секунд. Запускают тест. Наблюдают успешное прохождение теста. В меню статистики наблюдают прохождение выбранных кадров. Аналогично проводят запуск теста с настройкой длина кадров 1518 байт.
- **11.7.2.4** Контролируют наличие требуемых параметров и статистической информации в меню прибора и их работоспособность в соответствующих режимах.

11.7.3 Определение погрешности тактовой частоты

Определение погрешности формирования опорного сигнала тактовой частоты проводят с помощью частотомера. Схема подключения частотомера к прибору приведена на Рисунке 11.7.

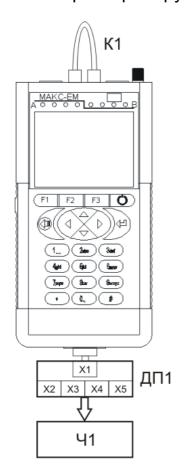


Рисунок 11.7 Схема подключения

К1 – патч-корд длинною 1 - 10м;

ДП1 – диагностический переходник;

Ч1 – частотомер Ч3-63/1 или аналогичный.

Частотомер подключают к разъему X2 диагностического переходника. Измеренное значение должно быть 125.00 МГц с относительно погрешностью $2*10^{-5}$.

11.7.4 Определение погрешности по частоте при передаче полезной информации

Определение погрешности формирования 100% загрузки канала проводят с помощью частотомера, подключенного к проверяемому прибору через диагностический разъем.

Схема подключения приведена на Рисунке 11.7. Частотомер подключают к разъему X4 диагностического переходника.

Измеряется частота передачи байтов информации при генерации кадров с минимально возможным межкадровым интервалом для нескольких длин кадров. Абсолютная погрешность измерения ±15 кГц.

Измеряется абсолютная погрешность:

$$\Delta = F4 - FT$$
, где

Fч – тактовая частота, измеренная частотомером;

Fт – теоретическая величина, вычисленная для каждой скорости канала.

Максимальная загрузка канала определяется по формуле:

$$FT = 125 \times M \times (L+8)/(L+20)$$
 Мбайт/с, где

L – длина кадра, байт.

M = 1 для 1000BASE-T,

M = 0,1 для 100BASE-T,

M = 0.01 для 10BASE-T.

Значения тактовой частоты FT в МГц в зависимости от скорости передачи и длины кадров приведены в Таблице 11.3. Пределы допускаемой относительной погрешности установки тактовой частоты (с учетом температурной нестабильности и старения) ±15 кГц.

Таблица 11.3

Длина кадра,	10BASE-T	100BASE-T	1000BASE-T
байт			
64	1,071	10,714	107,143
128	1,149	11,486	114,865
256	1,196	11,957	119,565
512	1,222	12,218	122,180
1024	1,236	12,356	123,563
1280	1,239	12,385	123,846
1518	1,240	12,402	124,025

На приборе МАКС-ЕМ выключают все тесты на порту В через меню «Процесс В». Наблюдают отсутствие надписей под светодиодом «Тест» порта В. В меню «Параметры интерфейсов» устанавливают скорость соединения 10 Мб/с для обоих измерительных портов. В меню «Процесс А», в топологии процессов «Терминал А>>В», запускают «Тест трафика» с настройками: нагрузка 100%, длина кадра из таблицы 11.3, длительность теста 10 секунд. Во время проведения теста измеряют значение частоты. Аналогично проводят измерения для скоростей соединения 100 и 1000 Мб/с для каждой длины кадра.

11.7.5 Определение погрешности измерения количества информации

Проверяемый прибор МАКС-ЕМ соединяют портом А с портом В с помощью патчкорда. На приборе МАКС-ЕМ выключают все тесты на порту В через меню «Процесс В» и наблюдают отсутствие надписей под светодиодом «Тест» порта В. В меню «Статистика» и выставляют флажок «Автоматическое обнуление» в закладке «Общие». В меню «Параметры интерфейсов» устанавливают скорость соединения 10 Мб/с для обоих измерительных портов. В меню «Процесс А», в топологии процессов «Терминал А>>В», запускают «Тест трафика» с настройками: нагрузка 100%, длина кадра 64 байта, длительностью 1 секунда и МАС-адресами, установленными вручную. Наблюдают успешное прохождение теста. В меню «Статистика» фиксируют величину Nм – измеренное количество принятых байтов на порту В, которое находится в закладке «Общие» -«Порт В – Rx байт». Одновременно с запуском теста проводят измерение с помощью частотомера, подключенного к проверяемому прибору через диагностический разъем. Схема подключения приведена на Рисунке 11.7. Частотомер подключают к разъему ХЗ диагностического переходника. Измеряют количество принятых байт информации Nч с учетом преамбулы кадров, которое будет определяться количеством измеренных импульсов.

Аналогично проводят измерения для длины кадра 1518 байт.

Рассчитывается абсолютная погрешность:

$$\Delta = N4*L/(L+8) - Nм,$$
 где

Nч — количество информации в байтах с учетом преамбулы, измеренное частотомером.

Nм — количество информации в байтах, измеренное прибором без учета преамбулы.

L – длина кадра, байт.

Абсолютная погрешность измерения ±1 байт.

11.8 Оформление результатов поверки

- **11.8.1** Результаты поверки оформляют путем записи в рабочем журнале и выдачи свидетельства установленной формы в случае соответствия тестеров требованиям, указанным в технической документации.
- **11.8.2** В случае отрицательных результатов поверки на тестер выдают извещение о непригодности с указанием причин выбраковки.

12 Техническое обслуживание

12.1. Техническое обслуживание прибора сводится к периодическому внешнему осмотру блока питания прибора и шнуров с целью содержания в исправном и чистом состоянии.

13 Транспортировка и хранение

- **13.1.** Прибор, упакованный в штатную тару, разрешается транспортировать при температуре воздуха от 25 °C до + 55 °C и относительной влажности воздуха 95 % автомобильным транспортом, в закрытых железнодорожных вагонах, герметичных отапливаемых отсеках самолетов и сухих трюмах судов. При транспортировке должны соблюдаться правила перевозки и крепления грузов, действующие на соответствующем виде транспорта.
- **13.2.** Транспортировка прибора автомобильным транспортом по дорогам первой категории допускается на расстояние до 1000 км со скоростью до 60 км/ч, по дорогам второй и третьей категории и грунтовым дорогам на расстояние до 250 км со скоростью 40 км/ч.
- **13.3.** При погрузке, транспортировке и разгрузке должны выполняться требования манипуляционных знаков и предупредительных надписей.
- **13.4.** Прибор должен храниться в отапливаемых складских помещениях в упаковке предприятия-изготовителя при температуре воздуха от 0 до + 40 °C, относительной влажности воздуха 80 % при температуре + 35 °C. Срок хранения не более 6 месяцев.
- **13.5.** В помещениях для хранения прибора не должно быть паров кислот, щелочей и других агрессивных жидкостей, вызывающих коррозию металлов.
- **13.6.** При транспортировке и хранении прибора необходимо соблюдать общие требования правил пожарной безопасности.

14 Сведения об изделии

Наименование: Тестер-анализатор пакетных сетей МАКС-ЕМ

Обозначение: МБСЕ. 468212.004

Дата выпуска:

Регистрационный реестра	номер	Государственного	№ 46699-11
Сведения о сертиф	икации		RU.C.33.112.A № 42498

Предприятие-изготовитель: ЗАО НПП «КОМЕТЕХ»

Россия, 190103, Санкт-Петербург, а/я 140.

т. (812) 333-06-61 т/ф (812) 333-08-09 e-mail: mail@kometeh.ru

www.kometeh.ru

Гарантии изготовителя

Предприятие-изготовитель гарантирует соответствие анализатора МАКС-ЕМ МБСЕ. 468212.004 ТУ требованиям технических условий при соблюдении потребителем правил транспортировки, хранения и эксплуатации. Гарантийный срок — 24 месяца со дня получения прибора заказчиком.

В договоре на поставку указанные сроки могут быть изменены по обоюдному согласию.

Свидетельство о приемке

Анализатор МАКС-ЕМ МБСЕ. 468212.004 ТУ, изготовлен и принят в соответ		•	
требованиями государственных стандартов, документацией и признан годным для эксплуатац	ействуюц		
Начальник ОТК			
личная подпись	расшифр	оовка подпи	си
	число	месяц	год
Главный инженер			
личная подпись	расшиф	рровка подп	иси
М.П.			

Свидетельство об упаковке

Анализато	p MAKC-EN	/I МБСЕ. 46	8212.004 ТУ, за	аводской н	омер	
	упакован	согласно	требованиям,	предусм	отренным	В
действующей	техническо	ой документ	гации.			
•		• • •	•			
должность		личная подпись	ŗ	асшифровка г	одписи	
			чи	сло месяц	год	

Сведения о первичной и периодической поверке

Сведения о первичной и периодической поверке прибора заносятся в нижеследующую таблицу:

Таблица

Дата поверки	Вид поверки	Результаты поверки	Должность	Подпись
поверки		поверки		

Дата поверки	Вид поверки	Результаты поверки	Должность	Подпись
		•		

Сведения о рекламации

Предъявление рекламации эксплуатирующими предприятиями и организациями заказчика проводится в соответствии с установленными правилами.

Сведения о рекламациях вносить в нижеследующую таблицу:

Таблица

T-	_			гаолица
Дата	Время		Кому и	Дата получения
обнару-	наработки до	Причина возникновения	когда	или ввода в
жения	обнаружения	неисправности	передана	эксплуатацию
дефекта	неисправности		реклама-	устройства после
			ция	рекламации
	1		l	

Приложение А.

Таблица А.1. Название битов в ToS байте

P2	P1	P0	T3	T2	T1	T0	CU0

Таблица А.2. Значения поля Precedence

· · · · · · · · · · · · · · · · · · ·
Название
Routine
Priority
Immediate
Flash
Flash Override
CRITIC/ECP
Internetwork Control
Network Control

Таблица А.3. Название битов в DSCP байте

DS5	DS4	DS3	DS2	DS1	DS0	ECN	ECN

Таблица А.4. Значения поля DSCP

Название	Двоичное значение DSCP	а А.4. Значения поля DSC Десятичное Значение DSCP
AF11	001010	10
AF12	001100	12
AF13	001110	14
AF21	010010	18
AF22	010100	20
AF23	010110	22
AF31	011010	26
AF32	011100	28
AF33	011110	30
AF41	100010	34
AF42	100100	36
AF43	100110	38
CS1	001000	8
CS2	010000	16
CS3	011000	24
CS4	100000	32
CS5	101000	40
CS6	110000	48
CS7	111000	56
Default	000000	0
EF	101110	46

Таблица А.5. Вероятности потерь кадров по классификации AF для поля DSCP

Вероятность потери кадра	Класс 1	Класс 2	Класс 3	Класс 4
низкая	AF11	AF21	AF31	AF41
средняя	AF12	AF22	AF32	AF42
высокая	AF13	AF23	AF33	AF43

Таблица А.6. Пересчет пропускной способности по уровню 2, $T_{\scriptscriptstyle L2}$ чистого канала для разных длин кадров

	Скорость подключения V_f , Мб/с				
Длина кадра	10	100	1000		
64	7,6190	76,190	761,90		
128	8,6486	86,486	864,86		
256	9,2754	92,754	927,54		
512	9,6241	96,241	962,41		
1024	9,8084	98,084	980,84		
1280	9,8462	98,462	984,62		
1518	9,8700	98,700	987,00		

Таблица А.7. Назначение сигналов MDI и MDI-X контактам

Контакт	MDI	MDI-X
1	BI_DA+	BI_DB+
2	BI_DA-	BI_DB-
3	BI_DB+	BI_DA+
4	BI_DC+	BI_DD+
5	BI_DC-	BI_DD-
6	BI_DB-	BI_DA-
7	BI_DD+	BI_DC+
8	BI_DD-	BI_DC-