ЗАВЕРЕНО

Главный Бухгалтер Представительства фирмы

"РОДЕ И ШВАРЦ ГМБХ И КО.КГ"

Осциллографы цифровые запоминающие RTM3002, RTM3004, RTA4004 Руководство по эксплуатации

Представительство фирмы "РОДЕ И ШВАРЦ ГМБХ И КО.КГ" (Германия) г. Москва Адрес: Российская Федерация, 115093 г. Москва, Павловская, д.7, стр.1 Тел.: +7 (495) 981-3560

> Москва 2018 г.

В настоящем руководстве описываются следующие модели::

- R&S[®]RTM3002 (1335.8794.02)
- R&S[®]RTM3004 (1335.8794.04)
- R&S[®]RTA4004 (1335.7700K04)

© 2018 Rohde & Schwarz GmbH & Co. KG Mühldorfstr. 15, 81671 München, Germany Тел.: +49 89 41 29 - 0 Факс: +49 89 41 29 12 164 E-mail: info@rohde-schwarz.com Internet: www.rohde-schwarz.com

Возможны изменения без уведомления – Данные без допусков не влекут за собой обязательств. R&S[®] - зарегистрированная торговая марка фирмы Rohde & Schwarz GmbH & Co. KG. Другие коммерческие имена - торговые марки соответствующих владельцев.

В настоящем руководстве используются названия продуктов Rohde & Schwarz без символа $^{\circ}$, например, вместо R&S RTM3000/RTA4002 используется R&S RTM3000/RTA4004.

Содержание

1	Введение	15
1.1	Техника безопасности	15
1.2	Основные характеристики	17
1.2.1	Метрологические и технические характеристики	17
1.2.2	Программное обеспечение	19
1.2.3	Комплектность средства измерений	20
1.3	Описание документации	21
1.3.1	Руководства и справочная система прибора	21
1.3.2	Технические данные и брошюра изделия	22
1.3.3	Калибровочный сертификат	22
1.3.4	Примечания к выпуску ПО и соглашение об использовании открытого ПО	22
1.4	Условные обозначения, применяемые в документации	22
1.4.1	Типографские условные обозначения	22
1.4.2	Условные обозначения для описания порядка действий	23
1.4.3	Примечания по снимкам экрана	23
2	Начало работы	24
2.1	Подготовка к работе	24
2.1.1	Распаковка и проверка прибора	24
2.1.2	Размещение прибора	24
2.1.3	Запуск прибора	26
2.1.4	Замена предохранителя	27
2.2	Общее описание прибора	28
2.2.1	Вид спереди	28
2.2.2	Вид сбоку	32
2.2.3	Вид сзади	32
3	Основы работы	35
3.1	Общие сведения о дисплее	35
3.2	Выбор приложения	36
3.3	Работа с сенсорным экраном	36
3.3.1	Доступ к функциям с использованием главного меню	36

3.3.3	Ввод данных	38
3.3.4	Использование жестов	39
3.4	Клавиши передней панели	40
3.4.1	Органы управления блока действий	40
3.4.2	Органы управления функционального блока ANALYSIS	41
3.5	Использование панели инструментов	43
3.6	Получение справки	44
4	Настройка осциллограмм	45
4.1	Подключение пробников и отображение сигнала	45
4.2	Настройка параметров вертикального отклонения	46
4.2.1	Органы управления функционального блока VERTICAL	47
4.2.2	Сокращенное меню для аналоговых каналов	48
4.2.3	Настройки системы вертикального отклонения	49
4.2.4	Настройки пробника	53
4.2.5	Настройки пороговых значений	54
4.2.6	Настройки ярлыков	55
4.3	Настройка развертки (система горизонтального отклонения)	56
4.3.1	Органы управления функционального блока HORIZONTAL	57
4.3.2	Быстрый доступ к горизонтальным настройкам	59
4.3.3	Настройки системы горизонтального отклонения	59
4.4	Настройка сбора данных	60
4.4.1	Быстрый доступ к настройкам сбора данных	61
4.4.2	Параметры сбора данных	61
5	Сигнал запуска	. 66
5.1	Органы управления функционального блока TRIGGER	67
5.2	Быстрый доступ к настройкам запуска	69
5.3	Общие настройки запуска	69
5.4	Запуск по фронту	71
5.5	Запуск по фронту А/В	74
5.6	Запуск по длительности	75
5.7	Запуск по видеосигналу	78
5.8	Запуск по шаблону	80
5.9	Запуск по ранту	82

5.10	Запуск по времени нарастания	83
5.11	Запуск по таймауту	85
6	Анализ осциллограмм	
6.1	Масштабирование	88
6.1.1	Использование функции масштабирования	88
6.1.2	Настройки масштабирования	90
6.2	Математические операции	91
6.2.1	Конфигурирование расчетных осциллограмм	91
6.2.2	Настройки расчетных осциллограмм	92
6.3	Опорные осциллограммы	95
6.3.1	Использование опорных осциллограмм	96
6.3.2	Настройки опорных осциллограмм	
6.4	Архив и сегментированная память (опция R&S RTM-K15)	100
6.4.1	Сегментированная память	101
6.4.2	Настройки функции архива	102
6.4.3	Отображение сегментов архива	104
6.4.4	Программа воспроизведения таблицы сегментов и архивных данных	104
6.4.5	Экспорт архивных данных	107
6.5	Функции поиска	110
6.5.1	Условия и результаты поиска	110
6.5.2	Общие настройки поиска	113
6.5.3	Поиск по фронту	115
6.5.4	Поиск по длительности	116
6.5.5	Поиск пиковых значений	117
6.5.6	Поиск по времени нарастания/спада	118
6.5.7	Настройка ранта	120
6.5.8	Поиск по сигналу синхронизации данных	121
6.5.9	Поиск шаблона	123
6.5.10	Оконный поиск	125
7	Измерения	128
7.1	Быстрые измерения	128
7.2	Автоматические измерения	129
7.2.1	Результаты измерений	130

7.2.2	Типы измерений	131
7.2.3	Настройки автоматических измерений	134
7.3	Курсорные измерения	137
7.3.1	Настройки курсора	139
8	Области применения	142
8.1	Тестирование по маске	
8.1.1	О масках и тестировании по маске	
8.1.2	Использование масок	143
8.1.3	Окно маски	
8.1.4	Меню Mask (маска)	146
8.2	БПФ-анализ	149
8.2.1	Отображение БПФ на экране	150
8.2.2	Выполнение БПФ-анализа	151
8.2.3	Настройка БПФ	
8.3	ХҮ-диаграмма	156
8.4	Цифровой вольтметр	
8.4.1	Использование ЦВМ	159
8.4.2	Настройки ЦВМ	159
8.5	Частотомер запуска	160
9	Документирование результатов	162
9.1	Сохранение и загрузка настроек прибора	
9.2	Экспорт осциллограмм	165
9.2.1	Настройки экспорта осциллограмм	165
9.2.2	Форматы файлов осциллограмм	
9.3	Аннотации	169
9.4	Снимки экрана	170
9.5	Быстрое сохранение с помощью функции OneTouch	172
9.6	Экспорт и импорт	173
10	Общая настройка прибора	175
10.1	Настройки прибора	175
10.2	Настройки отображения	179

10.4	Блокировка сенсорного экрана	182
10.5	Выполнение самовыравнивания	
10.6	Установка даты, времени и языка	184
10.7	Настройка пассивных пробников	185
10.8	Опции	186
10.8.1	Активация опций	
10.9	Обновление встроенного ПО	187
11	Подключение к сети и удаленная работа с прибором	189
11.1	Подключение по локальной сети (LAN)	
11.2	Подключение по USB	192
11.2.1	USB TMC	
11.2.2	USB VCP	193
11.2.3	USB MTP	193
11.3	Удаленный доступ с помощью веб-браузера	193
11.3.1	Доступ к прибору с помощью веб-браузера	
11.3.2	Страница Instrument Home (домашняя страница)	194
11.3.3	Страница Screenshot (снимок экрана)	194
11.3.4	Страница SCPI Device Control (управление устройством SCPI)	195
11.3.5	Страница Save/Load (сохранить/загрузить)	196
11.3.6	Страница Network settings (сетевые настройки)	197
11.3.7	Страница Change Password (изменить пароль)	198
11.3.8	Страница Livescreen (текущее изображение)	198
11.3.9	Страница Remote Front Panel (удаленная передняя панель)	198
12	Анализ последовательных шин	199
12.1	Основы анализа протоколов	199
12.1.1	Протокол - общие настройки	
12.1.2	Отображение результатов декодирования	202
12.1.3	Таблица данных шины: Результаты декодирования	
12.1.4	Метки шин	204
12.1.5	Список меток	205
12.2	Шина SPI (опция -K1)	
12.2.1	Протокол SPI	208
12.2.2	Конфигурация шины SPI	

12.2.3	Запуск SPI	
12.2.4	Результаты декодирования сигналов шины SPI	216
12.3	I²C (опция -K1)	217
12.3.1	Протокол I²С	218
12.3.2	Конфигурация протокола I ² C	220
12.3.3	Запуск по шине I ² C	221
12.3.4	Результаты декодирования сигналов шины I ² C	224
12.3.5	Список меток I ² C	226
12.4	UART / RS232 (опция -K2)	227
12.4.1	Интерфейс UART / RS232	227
12.4.2	Конфигурация протокола UART	
12.4.3	Запуск по шине UART	231
12.4.4	Результаты декодирования сигналов шины UART	234
12.5	Шина CAN (опция -K3)	235
12.5.1	Конфигурация шины CAN	
12.5.2	Запуск по сигналам шины CAN	237
12.5.3	Результаты декодирования сигналов шины CAN	242
12.5.4	Поиск по декодированным данным шины CAN	243
12.5.5	Список меток для протокола CAN	246
12.6	Шина LIN (опция -K3)	248
12.6.1	Протокол LIN	248
12.6.2	Конфигурация шины LIN	
12.6.3	Запуск по сигналам шины LIN	252
12.6.4	Результаты декодирования сигналов шины LIN	256
12.6.5	Поиск по декодированным данным шины LIN	257
12.6.6	Список меток для протокола LIN	259
12.7	Аудиосигналы (опция -К5)	
12.7.1	Протоколы передачи аудиоданных	261
12.7.2	Конфигурация аудиосигналов	
12.7.3	Конфигурирование версий аудиосигналов	266
12.7.4	Запуск по аудиосигналам	267
12.7.5	Результаты декодирования аудиосигналов	
12.8	MIL-STD-1553 (опция -K6)	270

Стандарт MIL-STD-1553	270
Конфигурация шины MIL-STD-1553	273
Запуск шины MIL-STD-1553	275
Результаты декодирования шины MIL-STD-1553	
Список меток протокола MIL-STD-1553	281
Шина ARINC 429 (опция -K7)	281
Основные сведения о шине ARINC 429	282
Конфигурация шины ARINC 429	282
Запуск по шине ARINC 429	
Результаты декодирования шины ARINC 429	
Поиск по декодированным данным ARINC 429	289
Список меток ARINC 429	292
Анализ параметров электропитания (опция -K31)	
Регулировка пробника	
Коррекция сдвига фазы пробников	
Настройки пробников для проведения измерения параметров электр	опитания
	295
Настройки отчета	296
Меню настроек статистики	297
Измерение входных параметров электропитания	298
Качество	298
Энергопотребление	
Гармоники	
Пусковой ток	309
Пусковой ток Измерение выходной мощности	309 31 1
Пусковой ток Измерение выходной мощности Пульсации	309 311 311
Пусковой ток	
Пусковой ток	
Пусковой ток. Измерение выходной мощности. Пульсации. Спектр. Переходная характеристика. Измерение коммутируемой мощности.	
Пусковой ток. Измерение выходной мощности. Пульсации. Спектр. Переходная характеристика. Измерение коммутируемой мощности. Скорость нарастания.	
Пусковой ток	
Пусковой ток	
	Конфигурация шины MIL-STD-1553. Запуск шины MIL-STD-1553. Результаты декодирования шины MIL-STD-1553. Список меток протокола MIL-STD-1553. Шина ARINC 429 (опция -K7). Основные сведения о шине ARINC 429. Конфигурация шины ARINC 429. Запуск по шине ARINC 429. Результаты декодирования шины ARINC 429. Поиск по декодирования шины ARINC 429. Список меток ARINC 429. Анализ параметров электропитания (опция -K31). Регулировка пробника. Коррекция сдвига фазы пробников. Настройки отчета. Меню настроек статистики. Измерение входных параметров электропитания. Качество. Энергопотребление. Гармоники.

13.7.1	КПД	
13.7.2	Потери при переключении	
13.7.3	Время включения/выключения	
13.7.4	Область надежной работы (S.O.A.)	
14	Логический анализатор (опция -B1, MSO)	
14.1	Сокращенное меню для логических каналов	
14.2	Настройки логического анализатора	
14.3	Логический запуск	
14.4	Анализ логических каналов	
14.5	Параллельные шины	350
14.5.1	Конфигурация параллельной шины	
14.5.2	Результаты декодирования	
15	Генерация сигналов (опция -В6)	
15.1	Функциональный генератор	355
15.1.1	Основные настройки функционального генератора	355
15.1.2	Настройки развертки	
15.1.3	Настройки модуляции	
15.1.4	Настройки сигнала произвольной формы	
15.2	Генератор тестовых последовательностей (шаблонов)	
15.2.1	Выбор шаблона	
15.2.2	Настройки шаблона Square Wave	
15.2.3	Настройки шаблона Counter	
15.2.4	Настройки шаблона Arbitrary	
15.2.5	Настройки шаблона Manual	
15.2.6	Настройка последовательных шин	
16	Техническое обслуживание	370
16.1	Очистка	
16.2	Хранение и упаковка	
16.3	Замена предохранителя	
16.4	Безопасность данных	
17	Remote Control Commands	
17.1	Conventions used in Command Description	

Programming Examples	374
Documenting Results	
Firmware Update	378
Search	379
Function Generator	
Common Commands	380
Waveform Setup	383
Automatic Setup	
Starting and Stopping Acquisition	
Vertical Settings	
Probes	
Horizontal Settings	
Acquisition Settings	
Waveform Data	399
Trigger	400
General Trigger Settings	
Edge Trigger	402
Width Trigger	404
Video/TV Trigger	
Pattern Trigger	
Runt Trigger	
Risetime Trigger	411
Timeout Trigger	413
Serial Bus	414
Waveform Analysis	414
Zoom	414
Mathematics	415
Reference Waveforms	418
Search	422
History (опция R&S RTM-K15)	439
Measurements	450
Quick Measurements	450
Automatic Measurements	451
	Programming Examples. Documenting Results. Firmware Update. Search. Function Generator. Common Commands. Waveform Setup. Automatic Setup. Starting and Stopping Acquisition. Vertical Settings. Probes. Horizontal Settings. Acquisition Settings. Waveform Data. Trigger. General Trigger Settings. Edge Trigger. Width Trigger. Video/TV Trigger. Pattern Trigger. Runt Trigger. Serial Bus. Waveform Analysis. Zoom. Mathematics. Reference Waveforms. Search. History (onция R&S RTM-K15). Measurements. Quick Measurements. Automatic Measurements.

17.7.3	Cursor Measurements	461
17.8	Applications	467
17.8.1	Mask Testing	
17.8.2	FFT Analysis	472
17.8.3	XY-Waveforms	
17.8.4	Digital Voltmeter	
17.8.5	Trigger Counter	
17.9	Documenting Results	
17.9.1	Transfer of Waveform Data	
17.9.2	Waveform Data Export to File	
17.9.3	Screenshots	496
17.9.4	Instrument Settings: Mass MEMomory Subsystem	498
17.10	General Instrument Setup	
17.10.1	Display Settings	505
17.10.2	System Settings	509
17.10.3	LAN Settings	513
17.10.4	USB Settings	514
17.10.5	Trigger Out	515
17.11	Serial Bus Analysis	516
17.11.1	General	516
17.11.2	SPI (Option -K1)	518
17.11.3	I ² C	531
17.11.4	UART (Option -K2)	542
17.11.5	CAN (Option -K3)	
17.11.6	LIN (Option -K3)	
17.11.7	Audio (Option -K5)	580
17.11.8	MIL-1553 (Option -K6)	592
17.11.9	ARINC 429 (Option -K7)	615
17.12	Power Analysis (Option -K31)	
17.12.1	General	628
17.12.2	Probe Adjustment	630
17.12.3	Report	630
17.12.4	Consumption	631

17.12.5	Dynamic ON Resistance	
17.12.6	Power Efficiency	634
17.12.7	Current Harmonic	636
17.12.8	Inrush Current	642
17.12.9	Modulation Analysis	644
17.12.10	Turn On/Off	647
17.12.11	Quality	648
17.12.12	Ripple	651
17.12.13	Slew Rate	657
17.12.14	S.O.A	662
17.12.15	Spectrum	670
17.12.16	Switching	672
17.12.17	Transient Response	676
17.13	Mixed Signal Option (Option -B1)	678
17.13.1	Logic Channels	679
17.13.2	Parallel Buses	685
17.14	Signal Generation (Option -B6)	690
17.14.1	Function Generator	690
17.14.2	Pattern Generator	696
17.15	Status Reporting	702
17.15.1	STATus:OPERation Register	702
17.15.2	STATus:QUEStionable Registers	704
	Приложение	
Α	Структура команды SCPI	708
A.1	Синтаксис команд общего назначения	708
A.2	Синтаксис команд, зависящих от устройства	709
A.2.1	Полная и сокращенная форма	
A.2.2	Числовые суффиксы	710
A.2.3	Необязательные символьные выражения	710
A.3	Параметры SCPI	711
A.3.1	Числовые значения	711
A.3.2	Специальные числовые значения	712
A 0 0		712

A.3.4	Текстовые параметры	713
A.3.5	Строки символов	713
A.3.6	Блок данных	713
A.4	Обзор элементов синтаксиса	714
A.5	Структура командной строки	715
A.6	Ответы на запросы	716
В	Последовательность команд и синхронизация	718
B.1	Предотвращение выполнения с перекрытием	718
С	Система отчета о состоянии	721
C.1	Структура регистра состояния SCPI	721
C.2	Иерархия регистров состояния	723
C.3	Содержимое регистров состояния	724
C.3.1	Байт состояния (STB) и регистр включения запроса на обслуживание (S	RE)724
C.3.2	Регистры Event Status Register (ESR) и Event Status Enable (ESE)	725
C.3.3	Регистр STATus:OPERation	726
C.3.4	Регистр STATus:QUEStionable	
C.4	Применение системы отчета о состоянии	730
C.4.1	Запрос на обслуживание	
C.4.2	Параллельный опрос	731
C.4.3	Запрос состояния прибора	731
C.4.4	Очередь ошибок	732
C.5	Сброс значений системы отчета о состоянии	732
	Список команд	734

1 Введение

1.1 Техника безопасности

R&S RTM3000/RTA4004 цифровой осциллограф предназначен для измерений в цепях, которые только косвенно подключены к сети или вообще не подключены. Он не классифицирован для какой-либо категории измерений.

Прибор предназначен для использования в промышленных зонах. При его использовании в жилых районах радиопомехи, вызванные прибором, могут превышать установленные пределы. Может понадобиться дополнительное экранирование.

Прибором должен управлять только персонал, который ознакомлен с возможными рисками, связанными с измерениями электрических параметров. Чтобы избежать несчастных случаев, следует соблюдать действующие местные и национальные правила и нормы техники безопасности.

Информация о безопасности является частью документации на изделие. Она содержит предупреждения относительно потенциальных опасностей и инструкции по предотвращению травм персонала и повреждений оборудования вследствие опасных ситуаций. Информация о безопасности представлена в следующем виде:

- Основные инструкции по технике безопасности на различных языках в виде отпечатанной брошюры входят в комплект поставки прибора.
- Инструкции по технике безопасности приводятся в разделах документации, описывающих моменты, когда требуется соблюдать осторожность при настройке или эксплуатации.

А ОСТОРОЖНО

Опасность получения травмы

Чтобы предотвратить поражение электрическим током, пожар, травмы персонала или повреждения оборудования, прибор следует использовать надлежащим образом:

- Не вскрывайте корпус прибора.
- Не используйте прибор при повреждении корпуса, экрана или какой-либо принадлежности. В случае обнаружения повреждения или подозрения на повреждение прибор подлежит обследованию уполномоченным обслуживающим персоналом.
- Не следует эксплуатировать прибор во влажной, сырой или взрывоопасной среде. Перед подключением входов убедитесь в том, что прибор, кабели и разъемы совершенно сухие.
- Не превышайте предельные значения напряжений, указанные в гл. 2.2.1.1, "Входные разъемы", на стр. 29.

ПРЕДУПРЕЖДЕНИЕ

Опасность повреждения прибора

Неподходящее место работы или неправильная схема измерений могут привести к повреждению прибора и подключенных устройств. Перед включением прибора обеспечьте следующие условия работы:

- Ознакомьтесь и соблюдайте "Основные инструкции по безопасности" из отдельной брошюры, а также инструкции, содержащиеся в настоящем руководстве.
- Обеспечьте условия эксплуатации, указанные в технических данных. Обратите внимание, что общие инструкции по технике безопасности также содержат сведения относительно условий эксплуатации.
- Разместите прибор в соответствии с рекомендациями из следующих разделов.

Убедитесь в том, что все вентиляционные отверстия, включая перфорацию на корпусе прибора, свободны для доступа воздуха. Расстояние до стен должно составлять не менее 10 см.

- Уровни всех сигналов на входных разъемах находятся внутри указанных диапазонов.
- Выходы сигналов подключены правильно и не перегружены.

ПРЕДУПРЕЖДЕНИЕ

Повреждение прибора электростатическим разрядом

Электростатический разряд (ЭСР) способен вызвать повреждение электронных компонентов прибора и испытуемого устройства (ИУ). Чаще всего электростатический разряд возникает при отключении или подключении ИУ или тестовой платы к измерительным портам прибора. Для предотвращения электростатического разряда используйте наручный браслет с заземляющим проводом или токопроводящий коврик с ножным браслетом.

На результаты измерений могут оказывать влияние электромагнитные помехи (ЭМП).

Для защиты от электромагнитных помех (ЭМП):

- Используйте подходящие высококачественные экранированные кабели.
 Например, используйте высокочастотные и сетевые кабели с двойным экранированием.
- Всегда согласуйте кабели с разомкнутыми концами.
- Обратите внимание на ЭМС-классификацию в технических данных.

1.2 Основные характеристики

1.2.1 Метрологические и технические характеристики

Основные метрологические и технические характеристики осциллографов цифровых запоминающих RTM3002, RTM3004, RTA4004 приведены в таблицах 1 и 2.

Наименование характеристики		Значение	
1		2	
Число каналов	RTM3002	2	
	RTM3004	4	
	RTA4004	4	
Входное сопротивление, Ом		50 или 1·10 ⁶	
Разрядность АЦП, бит		10	
Максимальная частота	на каждый канал	2,5·10 ⁹	
дискретизации _{Fд} , I ц	при объединении каналов	5·10 ⁹	
Объем памяти на каждый канал, миллионов отсчетов	на каждый канал для RTM3002, RTM3004 для RTA4004	40 100	
	при объединении каналов для RTM3002, RTM3004 для RTA4004	80 200	
Полоса пропускания, МГц	штатно для RTM3002, RTM3004	от 0 до 100	
	штатно для RTA4004	от 0 до 200	
	опции B222/B242 для RTM3002, RTM3004	от 0 до 200	
	опции В223/В243	от 0 до 350	
	опции B225/B245	от 0 до 500	
	опции В2210/В2410	от 0 до 1000	
Время нарастания пере-	штатно для RTM3002, RTM3004	3,5	
ходнои характеристики, нс, не более	штатно для RTA4004	1,75	
	опции B222/B242 для RTM3002, RTM3004	1,75	
	опции В223/В243	1	
	опции B225/B245	0,7	
	опции В2210/В2410	0,35	
		от 0,5·10 ⁻⁹ до 500	

Табл. 1-1: Метрологические характеристики

Наименование характеристики		Значение	
Пределы допускаемой относительной погрешно- сти по частоте бF внутрен- него опорного генератора	для RTM3002, RTM3004 для RTA4004	±3,5·10 ⁻⁶ ±10 ⁻⁶	
Диапазон значений коэф-	R = 50 Ом	от 0,0005 до 1	
фициента отклонения (КО), в зависимости от входного сопротивления R, B/дел	R = 1 MOm	от 0,0005 до 10	
Пределы допускаемой относительной погрешно- сти установки коэффи- циента отклонения бКО, %	KO < 1 мВ/дел для RTM3002, RTM3004 для RTA4004	±3 ±2,5	
	1 мВ/дел ≤ КО ≤ 5 мВ/дел для RTM3002, RTM3004 для RTA4004	±2 ±1,5	
	КО > 5 мВ/дел для RTM3002, RTM3004 для RTA4004	±1,5 ±1	
Диапазон установки постоянного смещения U _{см} , в зависимости от входного сопротивления R и коэф- фициента отклонения (KO), В	R = 50 Ом 0,5 мВ/дел ≤ КО ≤ 33,6 мВ/дел 33,8 мВ/дел ≤ КО ≤ 111 мВ/дел 112 мВ/дел ≤ КО ≤ 1 В/дел	±(2 B - 5·KO) ±(10 B - 5·KO) ± (30 B - 5·KO)	
	R = 1 МОм 0,5 мВ/дел ≤ КО ≤ 50 мВ/дел 50,5 мВ/дел ≤ КО ≤ 510 мВ/дел 515 мВ/дел ≤ КО ≤ 10 В/дел	±(2 B - 5·KO) ±(25 B - 5·KO) ±(250 B - 5·KO)	
Пределы допускаемой абсолютной погрешности установки постоянного смещения $\Delta U_{_{CM}},B$		±(0,005·U _{см} + 0,1·KO + 0,5 мВ)	
Пределы допускаемой абсолютной погрешности измерений постоян- ного напряжения ΔU _{изм} , В		±(δКО·(U _{изм} - U _{см})/100 + ΔU _{см})	
Источники синхронизации		входы каналов, вход внеш- ней синхронизации	
Минимальный уровень синх графа, дел, не более	1		
Режимы запуска		автоматический, ждущий, однократный	
Генератор сигналов произвольной формы (опция В6)			
Максимальная частота дискретизации, МГц		250	
Разрядность ЦАП, бит		14	
Диапазон частот выходного синусоидального сигнала, Гц		от 0,1 до 2,5·10 ⁷	
Диапазон установки размаха нагрузке 50 Ом, В	от 0,01 до 5		

Наименование характеристики	Значение
Пределы допускаемой абсолютной погрешности установки размаха напряжения синусоидального сигнала U _{ген} на частоте 1 кГц на нагрузке 50 Ом, В для RTM3002, RTM3004 для RTA4004	±(0,03·U _{ген} + 0,005) ±(0,015·U _{ген} + 0,003)
Здесь и далее:	
КО – коэффициент отклонения	
U _{см} – постоянное смещение	
U _{изм} – измеренное напряжение	

Табл. 1-2: Основные технические характеристики

Наименование характеристики	Значение
Напряжение питания от сети переменного тока частотой 50 или 60 Гц, В	от 100 до 240
Потребляемая мощность, Вт, не более	160
Габаритные размеры (ширина х высота х глу- бина), мм, не более	390x220x152
Масса (без опций и аксессуаров), кг, не более	3,3
Рабочие условия эксплуатации:	
- температура окружающего воздуха, (С	от 0 до +50
- относительная влажность воздуха при темпера- туре 40 °C, %, не более	85
Условия хранения и транспортирования:	
- температура окружающего воздуха, °С	от -40 до +70
- относительная влажность воздуха при темпера- туре 40 °C, %, не более	85
Средняя наработка на отказ, лет	10

1.2.2 Программное обеспечение

Идентификационные данные программного обеспечения осциллографов цифровых запоминающих RTM3002, RTM3004, RTA4004 приведены в таблице 3.

Программное обеспечение реализовано без выделения метрологически значимой части. Влияние программного обеспечения не приводит к выходу метрологических характеристик осциллографов цифровых запоминающих RTM3002, RTM3004, RTA4004 за пределы допускаемых значений.

Уровень защиты программного обеспечения «низкий» в соответствии с Р 50.2.077-2014.

Идентификационные данные (признаки)	Значение
Идентификационное наименование ПО	
для RTM3002, RTM3004	FW RTM3000
для RTA4004	FW RTA4000
Номер версии (идентификационный номер) ПО	
для RTM3002, RTM3004	версия 01.100 и выше
для RTA4004	версия 01.000 и выше
Цифровой идентификатор ПО	нет данных

Табл. 1-3: Идентификационные данные программного обеспечения (ПО)

1.2.3 Комплектность средства измерений

Наименование	Количество
Осциллограф цифровой запоминающий RTM3002, RTM3004, RTA4004	1 шт.
Опции:	по отдельному заказу
В1 – логические пробники	
В6 – генератор сигналов произвольной формы	
В222/В242 – полоса пропускания 200 МГц	
В223/В243 – полоса пропускания 350 МГц	
В225/В245 – полоса пропускания 500 МГц	
В2210/В2410 – полоса пропускания 1 ГГц	
К1 – анализ протоколов I2C/SPI	
K2 – анализ протоколов UART/RS232/RS-422/ RS-485	
K3 – анализ протоколов CAN/LIN	
К5 – анализ аудио протоколов I2S, LJ, RJ, TDM	
К6 – анализ протокола MIL-STD-1553	
К7 – анализ протокола Arinc 429	
К15 – режим сегментированной памят	
К18 – режим спектрального анализа	
K31 – анализ электрической мощности	
Кабель питания	1 шт.
Пассивные пробники	по количеству каналов
Руководство по эксплуатации	1 экз.
Методика поверки	1 экз.

Табл. 1-4: Комплектность средства измерений

1.3 Описание документации

Этот раздел содержит обзор пользовательской документации на R&S RTM3000/ RTA4004.

1.3.1 Руководства и справочная система прибора

Руководства доступны на веб-странице изделия:

www.rohde-schwarz.com/manual/rtm3000

www.rohde-schwarz.com/manual/rta4000

Руководство «Первые шаги»

Содержит общие сведения о приборе R&S RTM3000/RTA4004 и описание порядка настройки изделия. Печатная версия на английском языке входит в комплект поставки.

Руководство пользователя

Содержит описание всех режимов и функций прибора. Также приводятся общие сведения о дистанционном управлении, полное описание команд дистанционного управления с примерами программирования и информация о техническом обслуживании и интерфейсах прибора. Включает содержимое руководства «Первые шаги».

Интерактивная версия руководства пользователя позволяет немедленно получить доступ к полной версии через сеть Интернет.

Справочная система прибора

Справочная система обеспечивает быстрый контекстно-зависимый доступ к функциональному описанию непосредственно на приборе.

Основные инструкции по безопасности

Содержат инструкции по безопасности, условия эксплуатации и другую важную информацию. Печатный документ входит в комплект поставки прибора.

Руководство по процедурам обеспечения безопасности прибора

Описывает решение проблем безопасности при работе с R&S RTM3000/RTA4004 в охраняемых зонах.

Руководство по техническому обслуживанию

Содержит описание процедур проверки рабочих характеристик на соответствие номинальным значениям, замены и ремонта модулей, обновления встроенного ПО, поиска и устранения неисправностей, а также содержит механические чертежи и списки запасных деталей. Руководство по техническому обслуживанию

доступно для зарегистрированных пользователей в глобальной информационной системе Rohde & Schwarz (GLORIS, https://gloris.rohde-schwarz.com).

1.3.2 Технические данные и брошюра изделия

Технические данные включают в себя технические характеристики прибора R&S RTM3000/RTA4004. Также приведены опции с кодами заказа и дополнительные принадлежности. В брошюрах дается общее описание приборов и их конкретных характеристик.

См. www.rohde-schwarz.com/brochure-datasheet/rtm3000

See www.rohde-schwarz.com/brochure-datasheet/rta4000

1.3.3 Калибровочный сертификат

Этот документ можно скачать по адресу https://gloris.rohde-schwarz.com/calcert. Требуется идентификационный номер устройства, который указан на размещенной на задней панели прибора табличке.

1.3.4 Примечания к выпуску ПО и соглашение об использовании открытого ПО

В примечаниях к выпуску ПО описываются новые функции, усовершенствования, известные проблемы с текущей версией встроенного ПО и описание установки встроенного ПО. В документе "Соглашение об использовании открытого ПО" содержится полный текст лицензии на используемое открытое ПО.

См. www.rohde-schwarz.com/firmware/rtm3000 и www.rohde-schwarz.com/firmware/ rta4000. Документ «Соглашение об использовании открытого ПО» также можно прочитать непосредственно на приборе.

1.4 Условные обозначения, применяемые в документации

1.4.1 Типографские условные обозначения

В данном руководстве используются следующие условные обозначения:

Условное обозначение	Описание
"Элементы графического интерфейса пользователя"	Все наименования элементов графического интерфейса пользова- теля на экране, такие как диалоговые окна, меню, настройки, кнопки и функциональные клавиши заключены в кавычки.
КЛАВИШИ	Наименования клавиш печатаются прописными буквами.

Условные обозначения, применяемые в документации

Условное обозначение	Описание
Имена файлов, команды, программный код	Имена файлов, команды, примеры программного кода и выводимая на экран информация отличаются от основного текста шрифтом.
Значение ввода	Значение ввода, которое должен ввести пользователь, отобра- жается курсивом.
Ссылки	Ссылки, по которым после щелчка можно перейти в соответствую- щую часть документа, отображаются синим шрифтом.
"Ссылки"	Ссылки на другие части документации заключаются в кавычки.

1.4.2 Условные обозначения для описания порядка действий

При работе с прибором для выполнения одной и той же задачи могут применяться несколько альтернативных методов. В этом случае сначала описывается порядок действий с использованием сенсорного экрана. На любых элементах, которые могут быть активированы касанием, можно щелкнуть с помощью дополнительно подключаемой мыши. Альтернативная процедура управления с помощью клавиш на приборе или экранной клавиатуры описывается только в том случае, если она отличается от стандартной процедуры.

Выражение "выбрать" может относиться к любому из описанных методов, т.е. к нажатию пальцем на сенсорный экран, к использованию указателя мыши на экране или клавиши на приборе или на клавиатуре.

1.4.3 Примечания по снимкам экрана

При описании функций изделия используются примеры снимков экрана. Эти снимки экрана настолько наглядно, насколько это возможно, иллюстрируют предоставляемые функции и возможные взаимные зависимости между параметрами. Представленные значения могут не соответствовать реальным сценариям использования.

Снимки экрана обычно соответствуют полностью оснащенному изделию со всеми установленными опциями. Таким образом, некоторые функции, отображенные на снимках экрана, могут быть недоступны в конкретной конфигурации изделия.

2 Начало работы

2.1 Подготовка к работе

2.1.1 Распаковка и проверка прибора

1. Обследуйте упаковку на предмет повреждений.

Если упаковочный материал имеет следы физического воздействия, уведомите об этом транспортную компанию, которая осуществляла доставку прибора.

- 2. Осторожно распакуйте прибор и принадлежности.
- 3. Проверьте комплектность оборудования. См. раздел "Комплект поставки" на стр. 24.
- 4. Проверьте оборудование на предмет повреждений. В случае повреждений или некомплектности оборудования немедленно обратитесь в транспортную компанию и к своему дистрибьютору. В этом случае обеспечьте сохранность ящика и упаковочного материала.

Упаковочный материал

Сохраните оригинальный упаковочный материал. Если впоследствии прибор будет необходимо переслать или перевезти, этот материал можно использовать для предупреждения повреждения органов управления и разъемов.

Комплект поставки

В комплект поставки входят следующие компоненты:

- R&S RTM3000/RTA4004 цифровой осциллограф
- пробники R&S RT-ZP05 (2х для R&S RTM3002; 4х для R&S RTM3004/ RTA4004)
- Кабель питания для конкретной страны
- Печатное руководство «Первые шаги»
- Печатная брошюра «Основные инструкции по безопасности»

2.1.2 Размещение прибора

Прибор предназначен для использования в лабораторных условиях. Он может быть размещен на столе для автономной работы или установлен в монтажную стойку.

При работе в настольном размещении прибор должен устанавливаться на ровную плоскую поверхность. Прибор может использоваться в горизонтальном положении или с выдвинутыми опорными ножками.

Прибор можно установить в 19-дюймовую стойку с помощью соответствующего монтажного комплекта. Номер для заказа данного комплекта приводится в технических данных прибора. Инструкции по монтажу входят в комплект для монтажа в стойку.

А ВНИМАНИЕ

Опасность получения травмы при разложенных ножках

Ножки могут сложиться при перемещении прибора или неполном их раскладывании. Это может привести к травмированию персонала или повреждению прибора.

- Чтобы прибор был устойчивым, раскладывать и складывать ножки следует полностью. Ни в коем случае не перемещайте прибор с разложенными ножками.
- Не работайте и ничего не размещайте под прибором с разложенными ножками.
- При перегрузке эти ножки могут сломаться. Суммарная нагрузка на разложенные ножки не должна превышать 200 Рез.N.

ПРЕДУПРЕЖДЕНИЕ

Риск повреждения прибора из-за перегрева

Недостаточный приток воздуха может привести к перегреву R&S RTM3000/ RTA4004 и, как следствие, к искажению результатов измерений, нарушению функционирования прибора и даже его повреждению.

- Убедитесь в том, что все вентиляционные отверстия, включая перфорацию на корпусе прибора, свободны для доступа воздуха. Расстояние до стен составляет не менее 10 см.
- Если приборы устанавливаются рядом друг с другом, расстояние между ними должно быть не менее 20 см. Убедитесь в том, что в приборы не поступает предварительно нагретый воздух из соседних устройств.
- При монтаже прибора в стойку руководствуйтесь инструкциями изготовителя стойки, чтобы обеспечить достаточный приток воздуха и избежать перегрева.

2.1.3 Запуск прибора

Прибор R&S RTM3000/RTA4004 можно использовать при различных напряжениях сети переменного тока и он приспосабливается к ним автоматически.

Номинальные диапазоны:

- от 100 В до 240 В, от 50 Гц до 60 Гц
- от 1,6 А до 0,7 А
- макс. 160 Вт

А ВНИМАНИЕ

Опасность получения травмы

Подсоединяйте прибор только к розетке с контактом заземления.

Не используйте изолирующий трансформатор для подсоединения прибора к источнику питания переменного тока.

Запуск прибора

- Подсоедините кабель питания к разъему питания переменного тока на задней панели R&S RTM3000/RTA4004.
- 2. Подсоедините кабель питания к розетке.
- 3. Переведите выключатель питания на задней панели в положение І.

При этом клавиша STANDBYподсвечивается. Клавиша расположена в левом нижнем углу передней панели.

4. Нажмите клавишу STANDBY.

Прибор выполнит проверку системы и запустит встроенное ПО.

Прогрев и подготовка прибора

Перед началом процедуры самовыравнивания следует убедиться, что прибор запущен и прогревается. Минимальное время прогрева составляет приблизительно приблиз. 30 мин.

Выключение питания прибора

1. Нажмите клавишу STANDBY.

Все текущие настройки будут сохранены, и программное обеспечение завершит работу. Все процедуры передачи данных и выполняющиеся процессы будут прерваны.

- Переведите расположенный на задней стороне прибора выключатель сетевого питания в положение 0.
- 3. Отсоедините кабель питания переменного тока от источника питания.

Действие	Условие	Результат	STANDBY
Установите выключа- тель в положение I.	STANDBY (клавиша) была <i>выключена</i> , когда выключатель питания переклю- чился в положение 0.	Прибор находится в дежурном режиме.	Желтый
	STANDBY (клавиша) была <i>включена</i> , когда выключатель питания переключился в поло- жение 0.	Прибор выполняет системную проверку и загрузку встроенного ПО. Он готов к работе.	Зеленый
Включите STANDBY.	Питание включено.		
Выключите STANDBY.	Питание включено.	ПО завершает работу. Все настройки прибора сохраняются, выполняющиеся процедуры передачи данных и процессы прерываются (например, процесс самовыравнивания). Прибор находится в дежурном режиме.	Желтый
Установите выключа- тель в положение 0.	Прибор работает, цвет клавиши STANDBY Зеленый.	ПО завершает работу. Все настройки прибора сохраняются, выполняющиеся процедуры передачи данных и процессы прерываются (например, процесс самовыравнивания). Питание на прибор не подается.	Выключено
Установите выключа- тель в положение 0.	Прибор находится в дежурном режиме, цвет клавиши STANDBY Желтый.	Питание на прибор не подается.	Выключено

Обзор действий выключателя питания и клавиши STANDBY

2.1.4 Замена предохранителя

Прибор защищен плавким предохранителем. Он находится на задней панели между выключателем и разъемом сетевого питания.

Тип предохранителя: Размер 5х20 мм, 250 В~, Т3.15Н (медленно перегорающий), IEC60127-2/5

А ОСТОРОЖНО

Риск поражения электрическим током

Предохранитель является частью сетевого источника питания. Поэтому проведение работ с предохранителем при включенном питании может привести к поражению электрическим током. Перед открытием патрона предохранителя убедитесь в том, что прибор выключен и отсоединен от всех источников питания.

Всегда используйте предохранители, поставляемые компанией Rohde & Schwarz в качестве запчастей, или предохранители того же типа с теми же номинальными характеристиками.

- 1. Извлеките патрон предохранителя из гнезда на задней панели.
- 2. Замените предохранитель.
- 3. Вставьте патрон предохранителя обратно в гнездо до упора.

2.2 Общее описание прибора

2.2.1 Вид спереди

На рис. 2-1 показана передняя панель прибора R&S RTM3000/RTA4004. Функциональные клавиши объединены в функциональные блоки справа от дисплея.

Начало работы

Общее описание прибора

Рис. 2-1: Передняя панель прибора R&S RTM3000/RTA4004 с 4 входными каналами

- 1 = Дисплей
- 2 = Органы настройки по горизонтали и по вертикали
- 3 = Органы управления настройками запуска, действиями и анализом
- 4 = Аналоговые входные каналы (BNC)
- 5 = Внешний вход запуска
- 6 = Разъемы для вывода демонстрационного сигнала
- 7 = Разъем опционального выхода функционального генератора (BNC, -B6)
- 8 = Разъемы опционального генератора шаблонов (-В6)
- 9 = Разъемы для компенсации пробников
- 10 = Разъем USB
- 11 = STANDBY (клавиша)

Осциллограф R&S RTM3002 имеет 2 входных канала, а осциллограф R&S RTM3004/RTA4004 - 4 входных канала.

2.2.1.1 Входные разъемы

Входы BNC (4 и 5)

В R&S RTM3000/RTA4004 предусмотрены два или четыре канальных входа (4) для подачи входных сигналов. Внешний вход запуска (5) используется для упра-

вления измерениями с помощью внешнего сигнала. Уровень запуска можно настроить в диапазоне от -5 В до 5 В.

Для канальных разъемов может быть выбран входной импеданс; выбираемые значения 50 Ом и 1 МОм.

🛦 осторожно

Риск поражения электрическим током — максимальные входные напряжения

Максимальное входное напряжение на канальных входах не должно превышать:

- 400 В (пиковое) и 300 В (СКЗ) при входном импедансе 1 МОм
- 30 В (пиковое) и 5 В (СКЗ) при входном импедансе 50 Ом

Для *входа внешнего запуска* максимальное входное напряжение составляет 400 В (пиковое) и 300 В (СКЗ) при входном импедансе 1 Ом.

Уровни переходного перенапряжения не должны превышать 400 В (пиковое).

Подробные технические характеристики см. в технических данных.

Напряжения свыше 30 В (СКЗ), 42 В (пик.) или 60 В пост. тока считаются опасными при прикосновении. Во время работы с опасными контактными напряжениями применяйте надлежащие меры защиты, чтобы предотвратить непосредственное соприкосновение с измерительной установкой:

- Используйте только изолированные пробники напряжения, щупы и переходники.
- Не касайтесь компонентов под напряжением свыше 30 В (СКЗ), 42 В (пик.) или 60 В пост. тока.

А ВНИМАНИЕ

Опасность получения травмы и повреждения прибора

Прибор не классифицирован для какой-либо категории измерений. В случае измерений в цепях с переходными перенапряжениями категории II, III или IV, убедитесь в том, что такие перенапряжения не подаются на вход R&S RTM3000/ RTA4004. Используйте только пробники, которые соответствуют стандарту DIN EN 61010-031. Во время измерений в цепях категории II, III или IV всегда вставляйте пробник, который должным образом снижает напряжение, чтобы переходные перенапряжения свыше 400 В (пиковое) не подавались на вход прибора. Подробные сведения приведены в документации и информации по технике безопасности производителя пробника.

Пояснение: Согласно разделу АА.2.4 стандарта EN 61010-2-030 измерительные цепи без категории измерений предназначены для измерений в цепях, которые не соединены с сетью питания напрямую.

2.2.1.2 Другие разъемы на передней панели

DEMO (6)

Контакты предназначены для демонстрационных целей.

GEN: Функциональный генератор (7)

Выход BNC функционального генератора (с опцией -B6).

PATTERN GENERATOR (8)

Разъемы для генератора шаблонов РО, Р1, Р2, Р3.

PROBE COMP. (9)

Контакт для проведения компенсации пробника, поддерживает подстройку подключенных к каналу осциллографа пассивных пробников.

Сигнал прямоугольной формы для проведения компенсации пробника.

▲ Разъем заземления для пробников.

USB типа A (10)

Интерфейс USB 2.0 типа A для подключения мыши, клавиатуры или флэш-накопителя USB для сохранения и повторной загрузки настроек прибора и результатов измерений, а также для обновления встроенного ПО.

Общее описание прибора

2.2.2 Вид сбоку

Рис. 2-2: Вид сбоку прибора R&S RTM3000/RTA4004

1 = Разъемы логического пробника (опция смешанных сигналов -В1)

Логический пробник

Разъемы для логических каналов можно использовать, если установлена опция смешанных сигналов -В1. Эта опция обеспечивает разъемы для двух логических пробников, по восемь цифровых каналов в каждом (D0 ... D7 и D8 ... D15).

Максимальное входное напряжение составляет 40 В (пик.) на входном импедансе 100 кОм. Максимальная входная частота для сигнала с минимальным размахом входного напряжения и средней величиной гистерезиса 800 мВ (размах) составляет 400 МГц.

2.2.3 Вид сзади

На рис. 2-3 показана задняя панель прибора R&S RTM3000/RTA4004 с разъемами.

Рис. 2-3: Задняя панель прибора R&S RTM3000/RTA4004

- 1 = Разъем Aux Out
- 2 = Разъем USB, тип В
- 3 = Разъем LAN
- 4 = Разъем и выключатель сетевого питания
- 5 = Гнездо замка Кенсингтона для защиты прибора от кражи
- 6 = Проушина для замка, защищающего прибор от кражи
- 7 = не используется

AUX OUT (1)

Многоцелевой выход BNC, который может служить выходом сигналов норма/ нарушение и сигналов запуска, а также выходом опорной частоты 10 МГц.

USB типа B (2)

Интерфейс USB 2.0 типа В (устройство USB) для дистанционного управления прибором.

Примечание: На результаты измерений могут оказывать влияние электромагнитные помехи (ЭМП). Чтобы предотвратить это, используйте соединительные кабели USB длиной не более 1 м.

LAN (3)

8-контактный разъем RJ-45 используется для подключения прибора к локальной сети. Поддерживается скорость передачи данных до 1 Гбит/с.

Сеть питания переменного тока: разъем питания и выключатель питания (4) Прибор может работать с различными источниками питания. Он автоматически настраивается на надлежащий диапазон подаваемого напряжения. Селектор сетевого напряжения не предусмотрен.

Выключатель сетевого питания отключает прибор от сети питания переменного тока.

3 Основы работы

3.1 Общие сведения о дисплее

На сенсорном экране прибора отображаются осциллограммы и результаты измерений, а также вся необходимая информация для управления прибором.

Рис. 3-1: Дисплей прибора R&S RTM3000/RTA4004 с 4 каналами

- 1 = Панель инструментов
- 2 = Источник запуска, параметр основного запуска (здесь: перепад для запуска по фронту), уровень запуска
- 3 = Режим запуска и частота дискретизации
- 4 = Масштаб по горизонтали (временной масштаб) и положение по горизонтали
- 5 = Состояние и режим сбора данных (захвата данных)
- 6 = Дата, время, режим обучения, если включен (здесь: выключен), состояние подключения к локальной сети (зеленый = подключено, серый = не подключено, желтый = подключение)
- 7 = Маркер уровня запуска, имеет цвет источника запуска
- 8 = Маркер позиции запуска, имеет цвет источника запуска
- 9 = Маркеры каналов указывают уровни земли; выбран канал С1, т.е. он находится в фокусе ввода
- 10 = Результаты измерений (здесь: автоматические измерения слева, курсорные измерения справа)
 11 = Вертикальные настройки активных аналоговых каналов: масштаб по вертикали, ограничение полосы пропускания (нет индикатора = полная полоса, В_W= ограниченная частота), связь (по перем.току, по пост. току, с землей), ослабление пробника. Выбран канал С1.
- 12 = Логические каналы (требуется опция -В1)
- 13 = Настройки генератора сигналов (требуется опция -В6)
- 14 = Кнопка меню

3.2 Выбор приложения

Диалоговое окно "Выбор прилож." (выбор приложений) обеспечивает быстрый доступ ко всем доступным приложениям.

- Существует несколько способов открытия диалогового окна "Выбор прилож.":
 - Нажмите клавишу 🎟 APPS SELECTION.
 - Коснитесь значка-ромба "Меню" в нижнем правом углу экрана.

Прокрутите список. Выберите пункт "Приложения".

Apps Selection					
Applications	Protocol				
Sco	ope	QuickMeas	FFT	↓ ↓ ↓ ↓ ↓ Mask	XY
Der	mo	1.999 Meter	1235 Trigger Counter	Probe Adjust	
Function	on Gen.	Pattern Gen.			

3.3 Работа с сенсорным экраном

3.3.1 Доступ к функциям с использованием главного меню

Работа с сенсорным экраном прибора R&S RTM3000/RTA4004 не сложнее обращения с мобильным телефоном. Чтобы открыть меню, необходимо прикоснуться к кнопке "Меню" (меню) в нижнем правом углу экрана, представляющей из себя логотип R&S.
Основы работы

Работа с сенсорным экраном

Рис. 3-2: Откройте главное меню и выберите пункт меню

Рис. 3-3: Включите или выключите необходимый параметр (слева), или выберите его значение (справа)

Чтобы закрыть меню:

Коснитесь кнопки "Back" или коснитесь диаграммы за пределами меню.

3.3.2 Доступ к функциям с использованием элементов быстрого доступа

Ярлыки на панели информации в верхней части экрана, ярлыки каналов, а также результаты внизу экрана обеспечивают быстрый доступ к большинству важнейших настроек. При касании ярлыка открывается сокращенное меню, панель клавиш для числового ввода, переключатели настроек или соответствующее меню. Действие зависит от выбранного параметра.

Рис. 3-4: Сокращенные меню для канала (слева) и фронта запуска (справа)

Из сокращенного меню можно также открыть соответствующее полное меню. Также имеется возможность выключения каналов.

3.3.3 Ввод данных

Для ввода точных числовых значений прибор оснащен экранной панелью клавиш. Для ввода текста таким же образом служит экранная клавиатура.

Работа с сенсорным экраном

Рис. 3-5: Введите числовое значение и единицы измерения

3.3.4 Использование жестов

Перетаскивание одним пальцем

Выполните на диаграмме перетаскивание пальца *по горизонтали*, чтобы изменить горизонтальное положение всех осциллограмм. В частотной области изменяется положение центральной частоты.

Выполните на диаграмме перетаскивание пальца *по вертикали*, чтобы изменить вертикальное положение выбранной осциллограммы.

Для настройки вертикального положения каждой осциллограммы, уровня и позиции запуска перетаскивайте соответствующий маркер на экране.

Чтобы перетащить курсорную линию, коснитесь линии и перетащите ее в требуемое положение.

Пролистывание одним пальцем

Проведите пальцем по меню, чтобы выполнить его пролистывание.

Разведение и сведение двух пальцев

Разведите или сведите два пальца в *вертикальном* направлении, чтобы изменить масштаб по вертикали выбранной осциллограммы.

Разведите или сведите два пальца в *горизонтальном* направлении, чтобы изменить масштаб по горизонтали всех осциллограмм. В частотной области изменяется ширина полосы обзора частот.

Пролистывание двумя пальцами

Если установлена опция архива данных -K15, смахните двумя пальцами на диаграмме, чтобы выполнить прокрутку сегментов архива.

3.4 Клавиши передней панели

Клавиши передней панели показаны на рис. 2-1 на стр. 29.

Клавиши и ручки на передней панели сгруппированы в функциональные блоки:

- Раздел Horizontal: см. гл. 4.3.1, "Органы управления функционального блока HORIZONTAL", на стр. 57.
- Раздел Vertical: см. гл. 4.2.1, "Органы управления функционального блока VERTICAL", на стр. 47.
- Раздел Trigger: см. гл. 5.1, "Органы управления функционального блока TRIGGER", на стр. 67
- Раздел Action, см. гл. 3.4.1, "Органы управления блока действий", на стр. 40.
- Раздел Analysis, см. гл. 3.4.2, "Органы управления функционального блока ANALYSIS", на стр. 41.

3.4.1 Органы управления блока действий

Клавиши действий Action устанавливают прибор в определенное состояние и выполняют функции сохранения и загрузки.

CAMERA

Сохранение снимков экрана, осциллограмм и/или настроек согласно конфигурации в меню SAVE LOAD > "вкасание".

SAVE LOAD

Открытие меню "Файл" (файл), в котором имеется возможность:

 Сохранить настройки прибора, осциллограммы, опорные осциллограммы и снимки экрана

- Восстановить (загрузить) сохраненных ранее данные
- Импортировать и экспортировать настройки и опорные осциллограммы
- Настроить вывод снимков экрана
- Настроить поведение клавиши CAMERA (фотокамера)

TOUCH LOCK

Блокировка сенсорного экрана от случайного использования. Клавиша подсвечивается, если сенсорный экран отключен. Повторное нажатие разблокирует сенсорный экран.

CLEAR SCREEN

Удаление всех осциллограмм, комментариев и результатов измерений для удаленных осциллограмм. Все настройки остаются без изменений.

Команда дистанционного управления: DISPlay:CLEar[:SCReen] на стр. 505

3.4.2 Органы управления функционального блока ANALYSIS

Органы управления функционального блока ANALYSIS (анализ) служат для открытия различных меню для проведения анализа сигнала.

NAVIGATION

Функция этой универсальной поворотной ручки зависит от контекста использования:

- Если открыто меню выбора: вращайте поворотную ручку для выбора значения.
- Если в меню выбрано числовое значение, а панель клавиш закрыта: вращайте поворотную ручку для установки значения.
- Если выбраны курсоры, нажмите клавишу для выбора курсорной линии. Вращайте поворотную ручку для изменения положения выбранной курсорной линии.
- Если открыта экранная панель клавиш или экранная клавиатура: вращайте поворотную ручку, пока не будет выделен нужный символ, затем нажмите ручку, чтобы применить выбор.

CURSOR

Включение курсора с использованием последних курсорных настроек. Второе нажатие клавиши открывает меню "Курсор" (курсор). Если меню открыто, нажатие клавиши отключает курсор и зарывает данное меню.

MEAS

Открытие меню "Измер." (измерить), в котором можно настроить до 4 параллельных измерений. Доступные типы результатов зависят от типа выбранной осциллограммы.

INTENSITY

Открытие меню "Яркость" (яркость) для регулировки светимости элементов экрана и послесвечения.

QUICKMEAS

Отображение результатов базовых автоматических измерений для выбранного канала под масштабной сеткой и прямо на осциллограмме.

Нажмите клавишу для остановки быстрых измерений.

Примечание: В режиме быстрых измерений каналы, отличные от выбранного, выключаются. При активации режима быстрых измерений курсорные измерения автоматически отключаются. Отключите режим быстрых измерений перед выбором курсоров.

SEARCH

Включение поиска с использованием последних настроек. Второе нажатие клавиши открывает меню "Поиск" (поиск), в котором можно выполнить поиск различных событий в выборке, например, пиков или конкретных длительностей, и провести анализ результатов поиска.

FFT

Активация функций спектрального анализа с использованием последних настроек. Второе нажатие клавиши открывает меню "FFT" (БПФ).

Для отключения спектрального анализа нажимайте клавишу FFT, пока не отобразится осциллограмма во временной области.

PROTOCOL

Открытие меню "Шина" (шина), которое содержит конфигурацию последовательных и параллельных шин и настройки для их декодирования. Функция клавиши требует по-крайней мере одну из протокольных опций -B1, -K1, -K2 или -K3.

GEN

Открытие меню "Функц. ген." (функциональный генератор), в котором имеется возможность создания различных сигналов. Функция клавиши требует опции -B6.

APPS SELECTION

Открытие диалогового окна "Выбор прилож." (выбор приложений), в котором можно выбрать необходимое приложение или протокол для своих задач, например, тестирование по маске или протокол CAN.

3.5 Использование панели инструментов

Панель инструментов в верхней части экрана обеспечивает прямой доступ к важнейшим функциям управления и измерения. Выбранная функция подсвечивается. По умолчанию, на панели инструментов отображаются чаще всего используемые функции. Можно настроить содержимое панели инструментов таким образом, чтобы на ней отображались только необходимые функции.

Некоторые из функций панели инструментов представляют собой действия "за один клик". Эти действия выполняются сразу после касания соответствующего значка. Другие функции панели инструментов представляют собой интерактивные действия. При касании такой функции появляется сообщение с информацией о дальнейших действиях.

Настройка панели инструментов

1. Коснитесь значка "Toolbar Setup" (настройка панели инструментов).

- 2. Отключите функции, которые не будут использоваться.
 - Toolbar 2 × C \wedge Ċ. Ö G Undo Redo Preset Autoset Save Setup Load Setup \sim \sim 0 \sim Screenshot Save Wavef. Run/Stop Nx Single Cursor Zoom 0 廓 \otimes \mathbf{O} ٣i Meter FFT Mask Reference Search Demo Ø 1 \square Edu. Mode Annotation Delete Set to Default You can select up to 8 tools.
- 3. Коснитесь нужных функций. Можно выбрать не более 8 функций.

4. Закройте диалоговое окно.

3.6 Получение справки

В большинстве меню и диалоговых окон смысл выбранных параметров поясняется графически. Дополнительную информацию можно получить из контекстной справки, содержащей функциональное описание выбранного параметра.

Открытие окна справки

- 1. Коснитесь значка "Меню" в нижнем правом углу экрана.
- 2. Коснитесь значка "Справка" (справка) в верхней части главного меню.
- 3. Коснитесь параметра, для которого требуется получить информацию.

Закрытие окна справки

 Коснитесь пункта "Справка" (справка) в верхней части главного меню или значка "Close" (закрыть) в верхнем правом углу окна справки.

Подключение пробников и отображение сигнала

4 Настройка осциллограмм

В данной главе описывается порядок подключения и настройки пробников, регулировки горизонтальных и вертикальных настроек, а также управления сбором данных.

4.1 Подключение пробников и отображение сигнала

ПРЕДУПРЕЖДЕНИЕ

Опасность повреждения прибора

Необходимо установить коэффициент ослабления прибора в соответствии с используемым пробником. В противном случае результаты измерений не будут соответствовать фактическим уровням напряжения, что может привести к неверной оценке потенциальной опасности.

Ослабление пробников, поставляемых вместе с прибором, и стандартный коэффициент ослабления прибора имеет значение 10:1. Если используются только поставляемые пробники и коэффициент ослабления не изменяется, то регулировки ослабления не требуется.

- Сначала подключите пробники к канальным входам прибора, а затем к испытуемому устройству (ИУ).
- 2. Коснитесь ярлыка используемого канала в нижней строке экрана.

ļ	4C	DC			
20MHz					
Probe					
Off Menu			-200 µs	-150 µs	
C 1	100	mV/	62	50 mV/	DC 1:1
		6)		

- 3. Коснитесь "Пробник".
- Выберите коэффициент ослабления пробника.
 Коэффициент ослабления пробника указан на пробнике.

Примечание: При измерении тока с помощью шунтирующего резистора в качестве датчика тока необходимо умножить вольт-амперную характеристику резистора на ослабление пробника. Например, если используется резистор с сопротивлением 1 Ом и пробник с ослаблением 10:1, то вольт-амперное значение резистора составляет 1 В/А. Коэффициент ослабления пробника равен 0,1, а результирующее ослабление пробника тока составляет 100 мВ/А.

- Если подключено несколько пробников, повторите шаги 2...4 для оставшихся каналов.
- 6. Нажмите клавишу PRESET.
- 7. Нажмите клавишу AUTOSET.

PRESET

Сброс прибора в состояние со стандартными настройками, без анализа сигнала. Ранее сделанные пользователем настройки удаляются, а все каналы за исключением канала 1, отключаются.

Команда дистанционного управления: *RST

AUTOSET

Производится анализ имеющихся в аналоговых каналах сигналов и автоматическая настройка параметров запуска (синхронизации), горизонтального и вертикального отклонения таким образом, чтобы на экране отображалась стабильная осциллограмма.

Команда дистанционного управления: AUToscale на стр. 384

4.2 Настройка параметров вертикального отклонения

Органы управления и параметры системы вертикального отклонения регулируют масштаб и положение осциллограммы по вертикали, а также отображение осциллограммы. Настройки пробника также относятся к настройкам вертикального отклонения.

Ярлыки каналов в нижней части экрана отображают основные вертикальные настройки: масштаб по вертикали (например, канал 3 на рисунке ниже: 500 мВ/ дел), связь по перем. току (AC), ослабление пробника (10:1) и полоса пропускания (если ограничена). Ограничение осциллограммы обозначается оранжевыми стрелками. Ярлык выбранного канала имеет более яркую верхнюю цветную линию.

Рис. 4-1: Ярлыки каналов. Выбран канал 3. Осциллограмма канала 1 ограничена.

Существует несколько способов регулировки вертикальных настроек:

- Используйте органы управления функционального блока Vertical на передней панели для выбора канала, масштаба осциллограммы и установки смещения.
- Перетаскивайте одним пальцем точку на экране для изменения смещения выбранной канальной осциллограммы.
- Разведите или сведите два пальца в вертикальном направлении, чтобы изменить масштаб по вертикали выбранной осциллограммы.
- Используйте сокращенное меню для настройки связи по входу и пробников.

• Используйте полное меню для регулировки всех вертикальных настроек.

4.2.1 Органы управления функционального блока VERTICAL

CH <N>

Для каждого аналогового канала имеется отдельная клавиша канала. Если канал включен, клавиша подсвечивается цветом данного канала.

Действие клавиши зависит от состояния канала:

- Если канал выключен: включение и выбор соответствующего клавише канала.
 Расположенные рядом поворотные ручки подсвечиваются цветом канала.
- Если канал включен и находится в фокусе ввода (выбран): открытие меню вертикальных настроек данного канала.
- Если канал включен, но не находится в фокусе ввода (не выбран): Выбор канальной осциллограммы.
- Если канал выбран и открыто меню: Нажатие клавиши выключает канал.

Команда дистанционного управления:

CHANnel<m>:STATe Ha ctp. 386

OFFSET / POSITION (UPPER KNOB)

Поворотная ручка регулирует смещение аналогового канала или вертикальное положение расчетной или опорной осциллограммы, последовательной шины или логического блока.

Ручка подсвечивается цветом выбранной осциллограммы. Поворот ручки по часовой стрелке перемещает осциллограмму вверх. Нажатие клавиши вызывает следующие действия:

- Аналоговые каналы, расчетные осциллограммы и шины: обнуление значения
- Опорные осциллограммы: установка в исходное положение или на 0 деление.
- БПФ и отдельные биты логич. блока: установка стандартного значения
- Логические блоки: установка в центр экрана

Настройка параметров вертикального отклонения

Komaнда дистанционного управления: CHANnel<m>:OFFSet на стр. 387 CALCulate:MATH<m>:POSition на стр. 416 REFCurve<m>:VERTical:POSition на стр. 421

SCALE

Установка вертикального масштаба в вольтах на деление для изменения отображаемой амплитуды выбранной осциллограммы. Для аналоговых осциллограмм значение масштаба отображается в ярлыке осциллограммы снизу. Ручка подсвечивается цветом выбранной осциллограммы.

Поворот ручки SCALE по часовой стрелке растягивает осциллограмму. При этом значение масштаба В/дел уменьшается. Нажмите ручку для переключения между точной и грубой настройкой.

Чтобы получить максимальное разрешение по амплитуде, добейтесь, чтобы осциллограмма охватывала большую часть высоты экрана.

Komaнда дистанционного управления: CHANnel<m>:SCALe на стр. 386 CALCulate:MATH<m>:SCALe на стр. 417 REFCurve<m>:VERTical:SCALe на стр. 421

LOGIC

Включение логических каналов. Второе нажатие клавиши открывает меню, в котором можно выбрать и настроить для анализа цифровые каналы. Если открыто меню, нажатие клавиши отключает логические каналы.

Функция клавиши требует опции смешанных сигналов -В1.

Функции логического анализатора описаны в гл. 14, "Логический анализатор (опция -B1, MSO)", на стр. 345.

REF

Отображение опорных осциллограмм с использованием последних настроек. Клавиша действует так же, как клавиши каналов, см. "CH <N>" на стр. 47.

Опорные осциллограммы описаны в гл. 6.3, "Опорные осциллограммы", на стр. 95.

MATH

Включение расчетной осциллограммы, она вычисляется по захваченным данным. Клавиша действует так же, как клавиши каналов, см. "CH <N>" на стр. 47.

Математические операции описаны в гл. 6.2, "Математические операции", на стр. 91.

4.2.2 Сокращенное меню для аналоговых каналов

Для настройки пробников и связи по входу используйте сокращенное меню. Отсюда также можно открыть полное меню и выключить канал. Чтобы открыть сокращенное меню для канала, коснитесь ярлыка канала в нижней строке экрана.

Если канал не был выбран, коснитесь его дважды: один раз, чтобы выбрать сигнал, и второй - чтобы открыть сокращенное меню.

AC	DC			de la constant
201				
50Ω	1 MΩ			
Pro				
Off	Menu		-400 us	-300 us
<mark>C1</mark> 5	mV/ C	لبحر	5 mV/	DC 1:1
	è	2)	

Функции в сокращенном меню:

- "AC | DC": см. "Связь" на стр. 50.
- "<текущая полоса>" ("20МНz" в примере выше): см. "Полоса частот" на стр. 51.
- Оконечная нагрузка: "1 МΩ" или "50 Ω", см. "Завершение" на стр. 51.
- "Пробник": открытие меню "Пробник" (пробник), см. гл. 4.2.4, "Настройки пробника", на стр. 53.
- "Off" (Выкл): выключение канала.
- "Menu": открытие полного меню "По вертикали" (по вертикали).

4.2.3 Настройки системы вертикального отклонения

Полное меню "По вертикали" (по вертикали) содержит все вертикальные настройки.

 Чтобы открыть это меню для канала, нажмите соответствующую клавишу канала.

Если канал был активен, но не был выбран, коснитесь его дважды: один раз, чтобы выбрать сигнал, и второй - чтобы открыть сокращенное меню.

Меню "По вертикали" также доступно из главного меню.

Настройка осциллограмм

Настройка параметров вертикального отклонения

Рис. 4-2: Диалоговое окно вертикальных настроек, разделено на две половины

Состояние

Включение или выключение выбранного канала.

Команда дистанционного управления: CHANnel<m>:STATe на стр. 386

Связь

Выбор связи по входу, оказывающей влияние на прохождение сигнала между входным разъемом и последующими внутренними каскадами. Текущий вид связи каждого канала отображается в ярлыке осциллограммы под масштабной сеткой.

"AC" Связь по переменному току удобна, если постоянная составляющая сигнала не представляет интереса для исследования. Связь по переменному току блокирует постоянную составляющую сигнала, так что осциллограмма сигнала центрируется на нулевом напряжении.

"DC" При связи по постоянному току входной сигнал проходит без изменений, отображаются все компоненты сигнала.

Команда дистанционного управления: CHANnel<m>:COUPling на стр. 387

Земля

Соединение входа с виртуальной землей. Все канальные данные устанавливаются в значение 0 В. Заземление обозначается символом **П**. Данный вид связи не влияет на настройку заземления.

Команда дистанционного управления: CHANnel<m>:COUPling на стр. 387

Завершение

Подстройка входного импеданса прибора под импеданс ИУ. При использовании активного пробника Rohde & Schwarz значение оконечной нагрузки считывается из пробника - обычно оно составляет 50 Ом.

- "1 МΩ" Высокое входное сопротивление минимизирует эффект нагрузки на испытуемое устройство. Это значение устанавливается автоматически, если подключен пассивный пробник и не может быть изменен.
- "50 Ω" Параметр используется для измерительных систем с характеристическим импедансом 50 Ом. Входное сопротивление осциллографа минимизирует отражения вдоль пути прохождения сигнала и повышает точность результатов измерений. Связь по постоянному току устанавливается автоматически. 50-омное согласование указывается в ярлыках осциллограмм с помощью символа Ω.

Команда дистанционного управления: CHANnel<m>:COUPling на стр. 387

Полоса частот

Выбор предельной полосы пропускания. При полной полосе пропускания захватываются и отображаются все частоты в указанном диапазоне прибора с ослаблением менее 3 дБ. Полная полоса используется для большинства приложений.

Для уменьшения шума можно установить предел по частоте. Высокие частоты будут удалены из сигнала. Ограниченная полоса пропускания обозначается символом "В_w" в ярлыке осциллограммы.

При работе с аналоговыми сигналами требуемую полосу пропускания осциллографа определяет наивысшая частота сигнала. Для измерения амплитуды сигнала без искажений полоса пропускания осциллографа должна быть по крайней мере в 3 раза больше, чем максимальная частота измеряемого аналогового сигнала.

Большинство измеряемых сигналов намного сложнее простых синусоидальных колебаний и содержат несколько спектральных составляющих. Цифровой сигнал, например, сформирован из нескольких нечетных гармоник. Полоса пропускания осциллографа для цифровых сигналов должна быть по крайней мере в 5 раз больше, чем тактовая частота измеряемых сигналов.

Осциллограф не является изолированной системой. Для измерения сигналов необходим пробник, а пробник также имеет ограниченную полосу пропускания. Связка осциллографа и пробника определяет полосу пропускания всей системы. Для снижения влияния пробника на полосу пропускания всей системы, полоса пропускания пробника должна превышать полосу пропускания осциллографа. Рекомендуется использовать пробники с полосой пропускания в 1,5 больше, чем полоса пропускания осциллографа.

Команда дистанционного управления: CHANnel<m>:BANDwidth на стр. 388

Инверсия

Включение или выключение инверсии амплитуды сигнала. Инвертирование означает отражение значений напряжения всех составляющих сигнала относительно уровня земли. Инверсия влияет только на отображение сигнала, но не на функцию запуска.

Например: если осциллограф запускается по нарастающему фронту, функция запуска не изменится при инверсии, но реальный нарастающий фронт отображается как спадающий фронт.

Инверсия обозначается на ярлыках осциллограмм линией над именем канала.

Команда дистанционного управления: CHANnel<m>: POLarity на стр. 388

Положение

Перемещение выбранного сигнала на диаграмме вверх или вниз. Визуальный эффект такой же, как и для смещения. В то время как смещение устанавливает значение напряжения, положение является графическим параметром, задаваемым в делениях.

Масштаб по вертикали

Установка вертикального масштаба в вольтах на деление для изменения отображаемой амплитуды выбранной осциллограммы. Текущее значение показано на ярлыке осциллограммы под масштабной сеткой.

Вертикальный масштаб напрямую влияет на разрешение отображаемого сигнала по амплитуде. Для достижения полного разрешения АЦП настройте осциллограмму таким образом, чтобы она занимала большую часть диаграммы по высоте.

Команда дистанционного управления: CHANnel<m>:SCALe на стр. 386

Смещение

Напряжение смещения используется для коррекции смещенного сигнала. Вертикальный центр выбранного канала смещается на величину смещения, а сигнал занимает другое положение в области диаграммы. Для автоматической установки смещения используйте функцию Autoset.

Используйте смещение для измерения небольших переменных напряжений, которые накладываются на высокие постоянные напряжения. В отличие связи по переменному току, постоянная составляющая сигнала при установленном смещении не устраняется.

Команда дистанционного управления: CHANnel<m>:OFFSet на стр. 387

Выравнивание

Установка временной задержки для выбранного канала.

Выравнивание (сдвига) компенсирует временное различие между каналами, вызванное разной длиной кабелей, пробниками и другими причинами. Установка правильных значений сдвига особенно важна для точного запуска (синхронизации). Сигналы, проходящие по линиям разной длины, имеют разную задержку распространения. Такая задержка может привести к рассинхронизации отображения осциллограммы. Например, коаксиальный кабель длиной 1 метр имеет задержку распространения примерно 5,3 нс.

Команда дистанционного управления: CHANnel<m>:SKEW на стр. 388

Регулир. нуля

Разница между уровнями земли в ИУ и осциллографе может приводить к появлению больших погрешностей установки нуля, которые будут влиять на осциллограмму. Если ИУ заземлено, функция "Регулир. нуля" корректирует погрешность установки нуля, устанавливает для пробника нулевой уровень.

Погрешность установки нуля можно оценить путем измерения среднего значения сигнала, для которого возвращается нулевой уровень.

Komaндa дистанционного управления: CHANnel<m>:ZOFFset[:VALue] на стр. 389

Цвет осциллограммы

Выбор цветовой шкалы для отображения осциллограммы. Каждая шкала содержит набор цветов, где каждый цвет отображает определенную частоту появления.

"Temperature (темпера- тура)"	Отображение в температурных цветах. Синий соответствует редкому появлению отсчетов, а белый обозначает частое появление.
"Rainbow (радуга)"	Отображение в цветах радуги. Синий соответствует редкому появлению отсчетов, а красный обозначает частое появление.
"Fire (огонь)"	Отображение в цветах пламени. Желтый соответствует редкому появлению отсчетов, а красный обозначает частое появление.
"По умолча- нию"	Отображение осциллограммы в ее стандартном монохромном цвете.

Команда дистанционного управления: CHANnel<m>:WCOLor на стр. 389

4.2.4 Настройки пробника

В меню пробника устанавливается ослабление пробника для выбранного канала. Можно выбрать стандартный коэффициент ослабления, например, "10:1" или ввести пользовательское значение.

Доступ:CH <N> > "Пробник" (прокрутить вниз). Или: сокращенное меню > "Пробник" Настройка параметров вертикального отклонения

Польз.

Если стандартные значения не подходят, можно ввести произвольный коэффициент ослабления в диапазоне от 0,001:1 до 1000:1. Вертикальная шкала и измеренные значения умножаются на данный коэффициент так, чтобы отображаемые значения были равны целым измеренным значениям сигнала.

Kоманда дистанционного управления: PROBe<m>:SETup:ATTenuation:MANual на стр. 392

Ед. измер.

Выбор единиц измерения величин, которые может измерять пробник.

- V (Вольт) для измерений напряжения
- А (Ампер) для измерений тока

Kоманда дистанционного управления: PROBe<m>:SETup:ATTenuation:UNIT на стр. 392

Регулировка пробника

Запуск процедуры регулировки пробника. Мастер пошагово поясняет весь процесс регулировки.

4.2.5 Настройки пороговых значений

Пороговые значения используются для оцифровки аналоговых сигналов. Если значение сигнала выше порогового, состояние сигнала считается высоким (1 или истина в булевой логике). В противном случае, если значение сигнала ниже порогового, состояние считается низким (0 или ложь).

Доступ:CH <N> > "Порог" (прокрутить вниз).

Настройка параметров вертикального отклонения

Порог

Пороговые значения используются для оцифровки аналоговых сигналов. Если значение сигнала выше порогового, состояние сигнала считается высоким (1 или истина в булевой логике). В противном случае, если значение сигнала ниже порогового, состояние считается низким (0 или ложь).

Команда дистанционного управления: CHANnel<m>: THReshold на стр. 390

Гистерезис

Чтобы избежать изменения состояний сигнала из-за шума, установите гистерезис. Если сигнал колеблется внутри области гистерезиса и пересекает пороговое значение, изменения состояния сигнала не происходит.

Числовые значения параметров гистерезиса "Small" (малый), "Medium" (средний) и "Large" (большой) относятся к вертикальной шкале.

Команда дистанционного управления: CHANnel<m>:THReshold:HYSTeresis на стр. 391

Поиск порога

Прибор выполняет анализ канала и устанавливает пороговые значения для оцифровки. Если уровень сигнала не обнаружен, существующее пороговое значение остается неизменным, и порог можно установить вручную.

Kоманда дистанционного управления: CHANnel<m>:THReshold:FINDlevel на стр. 391

4.2.6 Настройки ярлыков

В меню "Метка" (ярлык) можно задать имя ярлыка для выбранной осциллограммы.

Доступ:CH <N> > "Метка" (прокрутить вниз).

Настройка развертки (система горизонтального отклонения)

Метка

Включение и выключение отображения ярлыка. Ярлык отображается на осциллограмме с правого края экрана.

Komaнда дистанционного управления: CHANnel<m>:LABel:STATe на стр. 392 CHANnel<m>:LABel на стр. 391

Предуст. метка

Выбор предварительно заданного текста ярлыка. Можно отредактировать текст с помощью функции "Ред. метки".

Ред. метки

Открытие экранной панели клавиш для ввода текста ярлыка. Если ранее был выбран предварительно заданный ярлык, он уже написан в строке ввода, и его можно изменить.

Максимальная длина имени составляет 8 символов, могут использоваться только ASCII-символы, содержащиеся на экранной панели клавиш.

4.3 Настройка развертки (система горизонтального отклонения)

Настройки системы горизонтального отклонения (или параметры развертки) регулируют отображение осциллограмм по горизонтали.

Обычно функция запуска определяет нулевой момент времени в сигнальной записи. Во многих сценариях может требоваться анализ сигнала в период времени до или после запуска. Для настройки горизонтального окна захвата под интересующий участок сигнала можно использовать следующие параметры:

- Положение по горизонтали задает расстояние по времени от точки запуска (нулевой точки диаграммы) до опорной точки (точки отсчета). Изменяя горизонтальное положение, можно перемещать точку запуска, даже за пределы экрана.
- Опорная точка это центр, относительно которого масштабируется ось времени на экране. Если изменить масштаб по оси времени, опорная точка на экране не изменит своего положения, а шкала растянется или сожмется по обеим сторонам от опорной точки.

Настройка развертки (система горизонтального отклонения)

В отличие от вертикальных настроек, которые зависят от осциллограммы, горизонтальные настройки применяются ко всем активным осциллограммам.

Существует несколько способов регулировки горизонтальных настроек:

- Используйте органы управления функционального блока Horizontal Horizontal на передней панели для масштабирования осциллограмм и установки их положения.
- Выполняйте горизонтальное перетаскивание точки на экране одним пальцем, чтобы изменить горизонтальное положение. Разводите или сводите два пальца, чтобы изменять масштаб по горизонтали.
- Используйте функции быстрого доступа для регулировки масштаба и положения.
- Используйте полное меню для регулировки всех горизонтальных настроек.

4.3.1 Органы управления функционального блока HORIZONTAL

POSITION

Изменение позиции запуска, расстояния по времени от точки запуска до опорной точки (смещение запуска). Точка запуска будет нулевой точкой диаграммы. Таким образом, можно установить точку запуска даже за пределами осциллограммы и проводить анализ сигнала за некоторое время до или после запуска.

Поворот по часовой стрелке перемещает положение вправо, а нажатие ручки сбрасывает его значение на нуль. Текущее значение будет показано на панели информации.

В режиме масштабирования и БПФ ручка устанавливает положение активной диаграммы. Коснитесь диаграммы, которую необходимо отрегулировать. Если активна функция масштабирования, изменится либо положение окна масштабирования, либо позиция запуска. На БПФ-диаграмме ручка изменяет положение центральной частоты в частотной области, или позицию запуска во временной области.

Команда дистанционного управления: TIMebase:POSition на стр. 393 REFCurve<m>:HORizontal:POSition на стр. 421 TIMebase:ZOOM:TIME на стр. 414

SCALE

Регулировка временного масштаба горизонтальной оси для всех сигналов (или развертка).

Вращайте ручку по часовой стрелке, чтобы растягивать осциллограммы - значение масштаба время/деление уменьшается. Нажмите ручку для переключения между точной и грубой настройкой масштаба. Текущее значение будет показано на панели информации.

На диаграмме масштабирования ручка изменяет коэффициент масштабирования. На БПФ-диаграмме ручка изменяет ширину полосы обзора. Коснитесь диаграммы, которую необходимо отрегулировать.

Komaнда дистанционного управления: TIMebase:SCALe на стр. 393 REFCurve<m>:HORizontal:SCALe на стр. 421 TIMebase:ZOOM:SCALe на стр. 414

ZOOM

Включение или выключение функции масштабирования с использованием последних настроек.

См. также: гл. 6.1, "Масштабирование", на стр. 88.

Команда дистанционного управления: TIMebase: ZOOM: STATe на стр. 414

HORIZONTAL

Открытие меню для настройки масштаба, положения и опорной точки по горизонтали. Текущее значение масштаба и положение будут показаны на верхней панели информации.

Если активна функция масштабирования, в данном меню также содержится коэффициент и положение окна масштабирования.

ACQUISITION

Открытие меню "Сбор данных" (сбор данных). Из данного меню можно управлять обработкой данных - способа формирования осциллограммы по захваченным отсчетам. Текущий режим сбора данных показан на верхней панели информации. См. также: гл. 4.4, "Настройка сбора данных", на стр. 60.

4.3.2 Быстрый доступ к горизонтальным настройкам

Для регулировки масштаба и положения по горизонтали можно использовать функции быстрого доступа в верхней части экрана. В ярлыках отображаются текущие значения настроек.

1 = регулировка масштаба по горизонтали

2 = регулировка положения по горизонтали

4.3.3 Настройки системы горизонтального отклонения

Полное меню "По горизонтали" (по горизонтали) содержит все вертикальные настройки. В режиме масштабирования в меню также содержатся параметры масштабирования.

Чтобы открыть меню, нажмите клавишу HORIZONTAL.

Точка отсчета

Определение опорной точки по времени на диаграмме. Она обозначается серым контурным треугольником в нижней части диаграммы.

Опорная точка определяет видимую часть осциллограммы. По умолчанию, опорная точка отображается в центре окна, ее можно перемещать влево или вправо.

Опорная точка - это центр, относительно которого масштабируется ось времени на экране. Если изменить масштаб по оси времени с помощью ручки SCALE, опорная точка на экране не изменит своего положения, а шкала растянется или сожмется по обеим сторонам от опорной точки. Если развести или свести два пальца на сенсорном экране для изменения масштаба по времени, опорная точка будет установлена между этими пальцами.

Команда дистанционного управления: TIMebase: REFerence на стр. 393

Временной масштаб

Определение временного масштаба горизонтальной оси для всех сигналов (или развертка). Масштаб указывается на панели информации над масштабной сеткой.

Команда дистанционного управления: TIMebase:SCALe на стр. 393

Положение по горизонтали

Определение позиции запуска, расстояния по времени от точки запуска до опорной точки (смещение запуска). Точка запуска будет нулевой точкой диаграммы. Изменяя горизонтальное положение, можно перемещать точку запуска, даже за пределы экрана.

При необходимости наблюдения участка осциллограммы, предшествующего запуску, введите требуемое время в качестве положения по горизонтали. Запрошенный участок осциллограммы будет показан в окрестности опорной точки. Используйте положительные значения, чтобы просматривать участки осциллограммы после запуска - осциллограмма и начальная точка диаграммы переместятся влево.

Значение положения указывается на панели информации над масштабной сет-кой.

Команда дистанционного управления: TIMebase: POSition на стр. 393

4.4 Настройка сбора данных

В процессе сбора данных осциллограф R&S RTM3000/RTA4004 захватывает сигнал и преобразует его в цифровые отсчеты. Цифровые отсчеты обрабатываются в соответствии с параметрами сбора данных. Результатом является сигнальная запись, которая отображается на экране и хранится в памяти.

Количество отсчетов сигнала в одной сигнальной записи называется длиной записи. Частота регистрации отсчетов сигнала, т.е. количество отсчетов сигнала в секунду, называется частотой дискретизации. Чем выше частота дискретизации, тем лучше разрешающая способность, а значит, в сигнале можно будет наблюдать больше деталей.

Для правильного восстановления сигнала необходима достаточная разрешающая способность. Если сигнал оцифрован с недостаточным шагом дискретизации, возникают искажения, т.е. на экране сигнал отображается с ошибкой. Чтобы избежать искажений и точно восстановить сигнал, частота дискретизации должна быть по крайней мере в 3...5 раз выше, чем наивысшая частотная составляющая сигнала.

Существует несколько способов регулировки и управления сбором данных:

- Используйте органы управления функционального блока Trigger на передней панели для запуска и остановки сбора данных. См. гл. 5.1, "Органы управления функционального блока TRIGGER", на стр. 67.
- Используйте функции быстрого доступа для регулировки режима сбора данных и выполнения однократного сбора данных.
- Используйте полное меню для регулировки всех настроек сбора данных.
- Для запуска и остановки сбора данных используйте клавиши RUN STOP и SINGLE блока запуска Trigger на передней панели.

4.4.1 Быстрый доступ к настройкам сбора данных

Для регулировки режима сбора данных и выполнения однократного сбора данных можно использовать функции быстрого доступа в верхней части экрана. В ярлыках отображаются текущие значения настроек.

1 = запуск и остановка непрерывного сбора данных, или запуск однократного сбора данных, если активна функция SINGLE

- 2 = регулировка режима сбора данных
- 3 = отображение текущей частоты дискретизации

4.4.2 Параметры сбора данных

Параметры сбора данных определяют режим обработки захваченных отсчетов в приборе. Текущий режим сбора данных и частота дискретизации показаны на верхней панели информации.

Для регулировки параметров сбора данных нажмите клавишу ACQUISITION.

Настройка сбора данных

Функция архива данных описана в гл. 6.4.2, "Настройки функции архива", на стр. 102.

Длина записи

Установка длины записи, т.е. количества отсчетов сигнала, сохраняемых в одной сигнальной записи.

Каждая предварительно заданная длина записи соответствует максимальному числу сегментов архива, который сохраняется в памяти прибора.

При использовании функции архива можно отключить автовыбор длины записи "Авто" и ввести значение в меню "Архив". В этом случае текущая длина записи будет показана в разделе "Сбор данных".

Komahga guctahuohhoro ynpabnehus: ACQuire:POINts:AUTomatic Ha ctp. 395 ACQuire:POINts[:VALue] Ha ctp. 395

Режим сбора данных

Способ формирования осциллограммы по захваченным отсчетам. Существует два основных способа формирования записи сигнала: децимация отсчетов и арифметические операции.

Децимация отсчетов уменьшает поток данных от АЦП до потока точек осциллограммы с более низкой частотой дискретизации и менее точным временным разрешением. Прибор R&S RTM3000/RTA4004 использует децимацию, если частота дискретизации сигнала становится меньше частоты АЦП. Режимы сбора данных "Пик. детектор" (обнаружение пиков) и "Выс. разреш." (высокое разрешение) относятся к методам децимации.

Арифметические операции позволяют сформировать расчетную осциллограмму из нескольких последовательных выборок сигнальных данных. Режимы сбора данных "Среднее" (среднее) и "Огибающ" (огибающая) относятся к арифметическим методам.

"Отсчетов"	Как правило, большинство сигналов отображаются оптимальным образом с помощью данного режима сбора данных, но очень короткие глитчи могут остаться незамеченными в данном режиме. Если частота дискретизации сигнала меньше частоты дискрети- зации АЦП, прибор уменьшает количество отсчетов: в виде точки
	осциллограммы регистрируется один из n отсчетов на интервале дискретизации, остальные отсчеты отбрасываются (децимация). И наоборот, если частота дискретизации сигнала выше частоты дискретизации АЦП, прибор добавляет точки сигнала к захвачен- ным отсчетам, используя метод интерполяции.
"Пик. детек- тор"	В виде точек осциллограммы регистрируются минимумы и макси- мумы из n отсчетов, остальные отбрасываются. Таким образом, прибор может обнаруживать кратковременные пики сигнала при настройках "медленного" временного масштаба, которые были бы пропущены в других режимах сбора данных.
"Выс. раз- реш."	В виде точки осциллограммы регистрируется среднее значение из n отсчетов. Усреднение снижает уровень шума, за счет чего достигается точное представление сигнала с высоким разреше- нием по вертикали.
"Среднее"	Среднее значение рассчитывается по данным текущей выборки и ряда предыдущих выборок. Данный метод снижает уровень случайного шума. Для него необходим стабильный, синхронизи- рованный и повторяемый сигнал. Количество выборок, используемых для расчета среднего значе- ния, задается параметром "Кол- во усреднений" на стр. 64.
"Усредн. + HR"	Сочетание режима высокого разрешения с усреднением по нескольким выборкам.
"Огибающ"	Каждый цикл сбора данных (выборка) выполняется в режиме децимации отсчетов, минимальное и максимальное значения по нескольким последовательным выборкам формируют огибаю- щую.
	На результирующей диаграмме отображаются две осцилло- граммы огибающих ниже и выше обычной осциллограммы: мини- мумы (нижняя) и максимумы (верхняя) отражают границы, в кото- рых находится сигнал. Данный метод полезен, например, в слу- чае зашумленного сигнала, но шум не является предметом изме- рений.
"Оги- бающ + ПД"	Каждая выборка берется в режиме децимации "Peak detect", и экстремальные значения изо всех выборок формируют огибаю- щую сигнала. Данный метод является более точным, чем про- стой метод огибающей "Огибающ".
"Огибающ. + HR"	Каждый цикл сбора данных (выборка) выполняется в режиме высокого разрешения, минимальное и максимальное значения по нескольким последовательным выборкам формируют огибаю- щую.

Komaнда дистанционного управления: CHANnel<m>:ARIThmetics на стр. 396 CHANnel<m>:TYPE на стр. 396 ACQuire:PEAKdetect на стр. 397 ACQuire:HRESolution на стр. 397

Кол- во усреднений

Определение количества осциллограмм, используемых для расчета усредненной осциллограммы. Чем выше данное значение, тем ниже уровень шума.

Для перезапуска расчета среднего значения нажмите клавишу CLEAR SCREEN.

Komahda ductahuohhoro ynpabnehus: ACQuire:AVERage:COUNt ha ctp. 397 ACQuire:AVERage:RESet ha ctp. 398

Nx однокр.

Установка количества осциллограмм, которые захватываются в режиме сбора данных SINGLE.

Команда дистанционного управления: ACQuire:NSINgle:COUNt на стр. 384

Развертывание

Включение автоматического режима развертывания. Прибор переключается в режим развертывания, если параметр Временной масштаб равен или меньше параметра Нач. развертыв..

Режим развертывания отображает незапускаемый, непрерывный сигнал и перемещает захваченные входные данные по экрану слева направо. Прибор отображает осциллограммы сразу, без ожидания завершения всего цикла сбора данных из записи сигнала.

Команда дистанционного управления: TIMebase:ROLL:AUTomatic на стр. 398

Нач. развертыв.

Установка предельного масштаба по оси времени для режима развертывания. Прибор автоматически переключается в режим развертывания, если:

- параметр Временной масштаб превышает заданное здесь значение.
- активирован режим развертывания (Развертывание).

Команда дистанционного управления: TIMebase:ROLL:MTIMe на стр. 398

Интерполяция

Выбор метода интерполяции, если для получения заданной длины записи требуется интерполяция.

- "Sin(x)/x" Два соседних отсчета АЦП соединяются кривой sin(x)/x, примыкающие отсчеты также соединяются с такими кривыми. Интерполированные точки размещаются на результирующей кривой. Данный метод интерполяции используется по умолчанию. Он является очень точным и позволяет получить наилучшую сигнальную кривую.
- "Linear" Два соседних отсчета АЦП соединяются прямой линией, точки интерполяции размещаются на этой линии. На экране будет видна полигональная осциллограмма, похожая на реальный сигнал, а также отсчеты АЦП в точках сочленений.
- "Sample-Hold" Отсчеты АЦП отображаются в виде гистограммы. Для каждого интервала дискретизации напряжение берется из отсчета и рассматривается как постоянная величина, а интервалы соединяются вертикальными линиями. В результате, можно наблюдать дискретные значения АЦП.

Команда дистанционного управления:

ACQuire: INTerpolate Ha CTp. 398

5 Сигнал запуска

Запуск (синхронизация) является способом захвата представляющих интерес участков сигналов. Правильный выбор типа запуска и корректная конфигурация всех настроек запуска позволяют обнаруживать различные события в сигналах.

Запуск производится при выполнении условий запуска. Прибором производится постоянный сбор и хранение точек выборки, необходимых для заполнения предзапусковой части записи сигнала. После возникновения события запуска прибор продолжает сбор данных до тех пор, пока не будет заполнена постзапускная часть сигнальной записи. После этого прибор прекращает сбор данных и отображает на экране осциллограмму сигнала. После обнаружения запуска прибор не воспринимает других событий запуска до тех пор, пока не будет выполнен запущенный цикл сбора данных.

К условиям запуска относятся:

- Источник сигнала запуска (канал)
- Тип запуска и его настройки
- Режим запуска

Кроме того, для отображения интересующего участка сигнала важны горизонтальное положение точки запуска и опорной точки. См. гл. 4.3, "Настройка развертки (система горизонтального отклонения)", на стр. 56.

Уровень и позиция запуска отмечены на масштабной сетке. Цвет маркеров совпадает с цветом источника запуска. Информация о важнейших параметрах запуска отображается на верхней панели информации.

Существует несколько способов настройки запуска:

- Используйте органы управления функционального блока Trigger на передней панели.
- Используйте функции быстрого доступа для настройки источника запуска, режима запуска и основных параметров установленного типа запуска.
- Используйте полное меню для выбора типа запуска и настройки всех параметров запуска.

•	Органы управления функционального блока TRIGGER	67
•	Быстрый доступ к настройкам запуска	69
•	Общие настройки запуска	69
•	Запуск по фронту	71
•	Запуск по фронту А/В	74
•	Запуск по длительности	75
•	Запуск по видеосигналу	78
•	Запуск по шаблону	80
•	Запуск по ранту	82
•	Запуск по времени нарастания	
•	Запуск по таймауту	85

5.1 Органы управления функционального блока TRIGGER

Клавиши и поворотная ручка функционального блока Trigger служат для настройки параметров синхронизации (запуска развертки), а также для запуска или остановки сбора (захвата) данных.

Зеленый светодиод над ручкой LEVELS загорается при запуске развертки прибора.

TRIGGER

Открытие меню "Trigger" (запуск).

SOURCE

Изменение источника аналогового запуска. Нажимайте клавишу до тех пор, пока не будет выбран требуемый аналоговый источник. Если в меню "Запуск" выбран цифровой источник или последовательная шина, или если для параметра "Тип запуска" установлено значение "Шаблон", клавиша откроет соответствующее меню.

Клавиша подсвечивается цветом выбранного канала, а выбранный источник показан на панели информации.

Команда дистанционного управления: TRIGger:A:SOURce на стр. 401

AUTO NORM

Клавиша переключает режим запуска развертки между автоматическим "Авто" и ждущим "Норм". Клавиша подсвечивается белым цветом, если установлен ждущий режим запуска "Норм". Текущий режим также показан на панели информации.

"Авто" При невыполнении условий запуска производится периодический запуск прибора с определенным интервалом. При возникновении реального события запуска оно получает преимущество. Данный режим позволяет увидеть сигнал даже до настройки функции запуска. Сигнал на экране не синхронизирован, и запуск для последовательных сигналов происходит в разных точках сигнала.

"Норм" Прибор захватывает сигнал только при возникновении запуска, т.е. при выполнении всех условий запуска. При отсутствии запуска захват сигнала не происходит и отображается последний захваченный сигнал. Если ранее не было захвачено ни одного сигнала, на экране ничего не отображается. Органы управления функционального блока TRIGGER

Команда дистанционного управления: TRIGger:A:MODE на стр. 400

LEVELS

Поворотная ручка служит для изменения уровня запуска. Поворот ручки по часовой стрелке приводит к увеличению уровня запуска.

Нажатие ручки устанавливает уровень на 50% от амплитуды сигнала.

Komaнда дистанционного управления: TRIGger:A:LEVel<n>[:VALue] на стр. 402 TRIGger:A:FINDlevel на стр. 403

FORCE TRIGGER

Незамедлительное выполнение однократного сбора данных. Используйте данную клавишу, если сбор данных выполняется в ждущем режиме и моментов запуска не возникает. В результате, можно подтвердить наличие сигнала и использовать отображение сигнала для определения способа запуска.

Команда дистанционного управления: *TRG на стр. 383

RUN STOP

Клавиша запускает и останавливает процесс непрерывного сбора данных. Зеленая подсветка указывает на выполняемый сбор данных. Красная подсветка – на остановку сбора данных.

Состояние сбора данных также отображается с правого края панели информации: "Run", "Complete", "Trig?" (ожидание запуска в режиме ждущего запуска) или "Not ready" (в работе). Для медленных разверток состояние "Pre" или "Post" показывается вместе с индикатором, показывающим уровень заполнения буфера.

Команда дистанционного управления: RUN на стр. 384 RUNContinous на стр. 384 STOP на стр. 385 ACQuire: STATe на стр. 385

SINGLE

Запуск указанного количества циклов сбора данных. Белая подсветка указывает на то, что прибор находится в режиме однократного запуска. Если сбор данных завершен, на панели информации отображается состояние ""Complete"" (завершено).

Для установки количества циклов сбора данных (выборок) нажмите клавишу ACQUISITION и введите значение "Nx однокр.".

Команда дистанционного управления: SINGle на стр. 384 RUNSingle на стр. 384

5.2 Быстрый доступ к настройкам запуска

Для настройки источника, режима и параметров для установленного тип запуска можно использовать функции быстрого доступа в верхней части экрана. В ярлыках отображаются текущие значения настроек.

- 1 = настройка источника запуска
- 2 = открытие панели клавиш для ввода значения уровня запуска или пороговых значений
- 3 = настройка перепада или полярности
- 4 = настройка режима запуска
- 5 = запуск и остановка непрерывного сбора данных, или запуск однократного сбора данных, если активна функция SINGLE
- 6 = доступные настройки зависят от типа запуска

5.3 Общие настройки запуска

Общие настройки запуска не зависят от установленного типа запуска. Они выделены на приведенном выше рисунке и описаны в текущем разделе. Другие параметры запуска являются специфическими для конкретных типов запуска, они описаны в следующих разделах.

Режим запуска

Клавиша переключает режим запуска развертки между автоматическим "Авто" и ждущим "Авто". Режим запуска определяет поведение прибора при отсутствии запуска. Текущее значение показано на панели информации.

- "Авто" При невыполнении условий запуска производится периодический запуск прибора с определенным интервалом. При возникновении реального события запуска оно получает преимущество. Данный режим позволяет увидеть сигнал даже до настройки функции запуска. Сигнал на экране не синхронизирован, и запуск для последовательных сигналов происходит в разных точках сигнала.
- "Норм" Прибор захватывает сигнал только при возникновении запуска, т.е. при выполнении всех условий запуска. При отсутствии запуска захват сигнала не происходит и отображается последний захваченный сигнал. Если ранее не было захвачено ни одного сигнала, на экране ничего не отображается.

Команда дистанционного управления: TRIGger:A:MODE на стр. 400

Тип запуска

Выбор типа запуска.

"Фронт"	Запуск по фронтам сигнала. См. гл. 5.4, <mark>"Запуск по фронту</mark> ", на стр. 71.
"Длит-ть"	Запуск по длительности импульса. См. гл. 5.6, "Запуск по длительности", на стр. 75.
"Видео"	Запуск по видеосигналам различных стандартов (PAL, NTSC и HDTV).
	См. гл. 5.7, "Запуск по видеосигналу", на стр. 78.
"Шаблон"	Запуск по логическим комбинациям (шаблонам) входных кана- лов.
	См. гл. 5.8, "Запуск по шаблону", на стр. 80.
"Рант"	Запуск по импульсам с амплитудой ниже нормальной. См. гл. 5.9, "Запуск по ранту", на стр. 82.
"Вр. нараст."	Запуск по быстро или медленно нарастающим или спадающим фронтам.
	См. гл. 5.10, "Запуск по времени нарастания", на стр. 83.
"Таймаут"	Запуск по таймауту уровня сигнала. См. гл. 5.11, "Запуск по таймауту", на стр. 85.
"Строка"	Для запуска по линии питания в качестве источника запуска используется сигнал переменного напряжения линии питания (обычно сигнал переменного тока с частотой 50 или 60 Гц). Используйте этот тип запуска для обнаружения событий по отно шению к частоте сети питания. Для запуска по линии питания настройки не предусмотрены.

"Посл. шина" Запуск по последовательной шине. Требуется, чтобы была установлена минимум одна протокольная опция -К1, -К2 или -К3, настроена последовательная шина и доступен декодированный сигнал.

См. гл. 12.1.1, "Протокол - общие настройки", на стр. 200.

Команда дистанционного управления:

TRIGger:A:TYPE Ha CTP. 401

Источник

Выбор источника запуска.

"C1, C2, C3, C4"	Выбор в качестве источника запуска одного из аналоговых входных каналов.
"D0 D15"	Выбор в качестве источника запуска одного из цифровых каналов при установленной опции смешанных сигналов -В1. Недоступно для запуска по видеосигналу, ранту и времени нарастания.
"Extern"	Установка в качестве источника запуска входа внешнего сигнала запуска на передней панели. Доступно для запуска по фронту и видеосигналу.
"B1, B2, B3 или B4"	Последовательная шина, которая используется для запуска по протоколам. Доступно только при выбранном типе запуска "Посл. шина".

Команда дистанционного управления: TRIGger:A:SOURce на стр. 401

Удерж, Время удерж

Включение режима удержания и определение времени удержания "Время удерж ". Следующий запуск происходит только по прошествии заданного времени удержания.

Режим запуска "Удерж " определяет момент времени, когда будет обнаруживаться следующее событие запуска после текущего события запуска. Таким образом, возникновение последующего запуска зависит от текущего. Режим удержания помогает добиться устойчивого запуска прибора при возникновении запуска по нежелательным событиям.

Команда дистанционного управления: TRIGger:A:HOLDoff:MODE на стр. 402 TRIGger:A:HOLDoff:TIME на стр. 402

5.4 Запуск по фронту

Запуск по фронту сигнала является самым распространенным типом запуска. Запуск происходит при пересечении сигналом источника запуска заданного уровня запуска в определенном направлении (перепад).

Запуск по фронту

Рис. 5-1: Событие запуска по фронту с положительным перепадом (нарастающий фронт)

TRIGGER > "Тип запуска" = "Фронт"

Перепад	
Ур. запуска, Порог	
Гистерезис	
Связь	
ВЧ подавл	
Шумоподавление	73

Перепад

Установка направления фронта для запуска. Возможен запуск по:

- 🗾 нарастающему фронту, т.е. по положительному изменению напряжения
- 🔼 спадающему фронту, т.е. по отрицательному изменению напряжения
- л нарастающему и спадающему фронту. После начала сбора данных прибор запускается по первому опознанному фронту.

Команда дистанционного управления: TRIGger:A:EDGE:SLOPe на стр. 402
Ур. запуска, Порог

Установка уровня напряжения или порогового уровня для запуска.

Можно также перетащить маркер уровня запуска на экране или повернуть ручку настройки уровня Levels. Нажмите ручку настройки уровня Levels, чтобы установить уровень на 50% от амплитуды сигнала.

Для запуска по длительности и таймауту данный уровень запуска является пороговым значением запуска.

Команда дистанционного управления: TRIGger:A:LEVel<n>[:VALue] на стр. 402 TRIGger:A:FINDlevel на стр. 403

Гистерезис

Установка диапазона гистерезиса в области уровня запуска. Гистерезис не допускает нежелательных событий запуска, вызванных шумовыми колебаниями в области уровня запуска. Автоматическое, малое, среднее, большое значения гистерезиса зависит от масштаба по вертикали. На приборах с полосой пропускания 1 ГГц также можно установить пользовательские значения гистерезиса.

Команда дистанционного управления:

TRIGger:A:HYSTeresis Ha ctp. 403 TRIGger:A:LEVel<n>:HYSTeresis Ha ctp. 403

Связь

Установка типа связи для источника запуска.

"AC"	Связь по переменному току. Фильтр высоких частот удаляет постоянное смещение напряжения из сигнала запуска.
"DC"	Связь по постоянному току. Сигнал запуска сохраняется неиз- менным.
"LF Reject"	Установка привязки запуска к высоким частотам. ФВЧ 15 кГц подавляет нижние частоты в сигнале запуска. Используйте этот

Команда дистанционного управления:

TRIGger:A:EDGE:COUPling Ha ctp. 403

ВЧ подавл.

Включение или отключение дополнительного ФНЧ 5 кГц в тракте запуска. Данный фильтр подавляет высокие частоты и доступен при связи по переменному и постоянному току.

режим только для сигналов с очень высокой частотой.

Можно использовать либо функцию "ВЧ подавл.", либо функцию "Шумоподавление".

Komaнда дистанционного управления: TRIGger:A:EDGE:FILTer:HFReject на стр. 404

Шумоподавление

Расширение гистерезиса для недопущения нежелательных событий запуска, вызванных шумовыми колебаниями в области уровня запуска.

Можно использовать либо функцию "ВЧ подавл.", либо функцию "Шумоподавление".

Komaнда дистанционного управления: TRIGger:A:EDGE:FILTer:NREJect на стр. 404

5.5 Запуск по фронту А/В

Запуск по фронту A/B - это последовательность из двух условий запуска по фронту. Прибор запускается только при выполнении обоих условий (A и B). Можно настроить задержку между событиями A- и B-запуска.

TRIGGER > "Тип запуска" = "Фронт А/В" > "Настройка запуска"

Настройка запуска

Открытие диалогового окна настройки последовательности запуска. Слева как обычно задается первое событие запуска по фронту (А). Справа с теми же параметрами задается второе событие запуска по фронту (В): источник, уровень, фронт и гистерезис. Условия В-запуска учитываются при выполнении условий Азапуска.

Дополнительно можно установить задержку для В-запуска ("Запуск").

Запуск

Установка времени задержки или задержки события для В-запуска. Прибор ожидает в течение заданного времени задержи после А-запуска момента обнаружения события В-запуска.

- "After time" Установка времени ожидания до начала проверки выполнения условий В-запуска.
- "After events" Установка количества событий В-запуска, которые удовлетворяют условию В-запуска, но вызывают запуск прибора. Осциллограф запускается по n-му событию, последнему из указанного количества событий.

5.6 Запуск по длительности

При запуске по длительности импульса происходит сравнение длительностей (ширины) импульсов с заданным ограничением по времени. Выполняется детектирование импульсов с точным значением длительности, импульсов короче или длиннее заданного интервала времени, и импульсов, находящихся внутри или вне допустимых временных интервалов. Длительность импульса измеряется по уровню запуска.

Запуск по длительности можно использовать, например, для запуска по глитчам.

Рис. 5-2: Длительность импульса короче (слева) или длиннее (справа), чем заданное значение (другое название "запуск по глитчу")

Рис. 5-3: Длительность импульса внутри или снаружи допустимого интервала времени

- 1 = Внутри: мин. длительность < импульс < макс.длительность
- 2 = Снаружи: импульс < мин. длительность ИЛИ импульс > макс.длительность

Рис. 5-4: Длительность импульса равна или не равна заданному значению, с дополнительным допуском (Δ)

- 1 = Равно: (длительность допуск) < импульс < (длительность + допуск)
- 2 = Не равно: импульс < (длительность допуск) ИЛИ импульс > (длительность + допуск)
- ► TRIGGER > "Тип запуска" = "Длит-ть"

Запуск по длительности

Trigger Type	Ċ
Width	*
Source	Ç
C1	*
Polarity	
л	ប
Comparison	Ċ
Width =	~
Time t	Ċ
	400 µs
Variation	Ċ
	±150 μs
Threshold	Ċ
	500 mV
Hysteresis	Ċ
Medium	~

Полярность	76
Сравнение	76
Время t	77
Отклонение	77
Время t1, Время t2	77
Порог	
Гистерезис	77

Полярность

Установка полярности импульса. Возможен запуск по:

- Л положительному импульсу, длительность определяется от нарастающего до спадающего фронта.
- П отрицательному импульсу, длительность определяется от спадающего до нарастающего фронта.

Komaнда дистанционного управления: TRIGger:A:WIDTh:POLarity на стр. 404

Сравнение

Установка способа сравнения измеренной длительности импульса с заданными пределами.

- "Длит-ть >" Запуск по длительности импульса большей, чем опорное время "Время t".
- "Длит-ть <" Запуск по длительности импульса меньшей, чем опорное время "Время t".
- "Длит-ть =" Запуск по длительности импульса, равной опорному времени "Время t" при нулевом отклонении "Отклонение" Δt = 0. Если отклонение "Отклонение" ≠ 0, эта настройка задает запуск по импульсам в пределах интервала t±Δt.

"Длит-ть ≠"	Запуск по длительности импульса, не равной опорному времени "Время t" при нулевом отклонении "Отклонение" Δt = 0. Если отклонение "Отклонение" ≠ 0, эта настройка задает запуск по импульсам за пределами интервала <i>t</i> ± Δ <i>t</i> .
"Внутри", "Снаружи"	Запуск по импульсам внутри или снаружи интервала, заданного пределами "Время t1" и "Время t2". Данный метод представляет собой альтернативную настройку определения интервала с временем "Время t" и отклонением "Отклонение". Значения независимы. Значения "Отклонение" и "Время t" перестраиваются, если изменить t1 и t2, и наоборот.

Команда дистанционного управления: TRIGger:A:WIDTh:RANGe на стр. 405

Время t

Установка опорного времени, номинального значения для параметров сравнения "Длит-ть >", "Длит-ть <", "Длит-ть =" и "Длит-ть ≠".

Команда дистанционного управления: TRIGger:A:WIDTh:WIDTh на стр. 405

Отклонение

Установка интервала ∆t для опорного времени "Время t", если для параметра сравнения установлено значение "Длит-ть =" или "Длит-ть ≠". Прибор запускается по импульсам внутри или снаружи интервала t±∆t.

Komahga дистанционного управления: TRIGger:A:WIDTh:DELTa на стр. 405

Время t1, Время t2

Установка нижнего и верхнего пределов времени, определяющих временной интервал, если для параметра сравнения установлено значение "Длит-ть =" или "Длит-ть ≠". Значения "Time t" и "Variation" перестраиваются соответствующим образом.

Komahda ductahuohhoro ynpabnehus: TRIGger:A:WIDTh:RANGe ha ctp. 405 TRIGger:A:WIDTh:DELTa ha ctp. 405

Порог

Пороговое значение канала-источника запуска, используемое в качестве уровня запуска по длительности.

См. также "Порог" на стр. 55 и "Ур. запуска, Порог" на стр. 73.

Команда дистанционного управления: TRIGger:A:LEVel<n>[:VALue] на стр. 402 CHANnel<m>:THReshold на стр. 390

Гистерезис

Гистерезис канала-источника запуска, см. "Гистерезис" на стр. 55.

Команда дистанционного управления: CHANnel<m>:THReshold:HYSTeresis на стр. 391

5.7 Запуск по видеосигналу

Запуск по телевизионному или видеосигналу используется для анализа аналоговых модулирующих видеосигналов. Можно синхронизироваться по модулирующим видеосигналам стандартного и высокого разрешения, подаваемым на аналоговый канальный вход или на вход внешнего сигнала запуска.

Прибор запускается по синхроимпульсам.

Сначала выберите стандарт и полярность сигнала, затем определите режим запуска (по строкам или по полям изображения) и введите соответствующие параметры.

TRIGGER > "Тип запуска" = "Видео"

Рис. 5-5: Меню запуска по видеосигналу

Стандарт	
Сигнал	
Режим	
Строка	

Стандарт

Выбор стандарта цветного телевидения.

Возможен запуск по различным сигналам телевидения стандартной четкости (SDTV):

- "PAL"
- "NTSC"
- "SECAM"
- "PAL-M"
- "SDTV 576i" (PAL и SECAM)

Стандарты телевидения высокой четкости (HDTV) обозначаются количеством активных строк и системой развертки:

• "HDTV 720p"

- "HDTV 1080p" (р прогрессивная развертка)
- "HDTV 1080і" (і чересстрочная развертка)

Команда дистанционного управления:

TRIGger:A:TV:STANdard Ha ctp. 406

Сигнал

Выбор полярности сигнала. Следует иметь в виду, что синхроимпульс имеет обратную полярность. Если модуляция видеосигнала положительная, синхроимпульс будет отрицательным. Если модуляция отрицательная, синхроимпульс будет положительным. Фронты синхроимпульсов используются для запуска, поэтому неправильная настройка полярности приведет к случайному запуску по видеоинформации.

Рис. 5-6: Положительный видеосигнал с отрицательным двухуровневым синхроимпульсом (SDTV, слева) и отрицательный сигнал с положительным трехуровневым синхроимпульсом (HDTV, справа)

Команда дистанционного управления: TRIGger:A:TV:POLarity на стр. 406

Режим

Выбор из следующих условий запуска:

"Все кадры"	Осциллограф запускается по началу всех кадров видеосигнала.
"Нечет- ные кадры"	Осциллограф запускается по началу кадров видеосигнала с нечетными номерами.
"Чет- ные кадры"	Осциллограф запускается по началу кадров видеосигнала с четными номерами.
"Все строки"	Осциллограф запускается по началу всех строк видеосигнала.
"Номер строки"	Включение запуска по точному номеру строки "Строка".

Команда дистанционного управления: TRIGger:A:TV:FIELd на стр. 406

Строка

Установка точного номера строки, если для режима "Режим" установлено значение "Номер строки". Осциллограф запускается точно по началу выбранной строки в любом поле.

Команда дистанционного управления: TRIGger:A:TV:LINE на стр. 407

5.8 Запуск по шаблону

Запуск по шаблону является логическим запуском. Он позволяет использовать любые логические комбинации сигналов входных каналов и обеспечивает проверку функционирования цифровой логики. Дополнительно для шаблона можно установить временное ограничение. Таким образом, можно осуществлять запуск по шаблонам параллельных шин.

Шаблон каналов настраивается в диалоговом окне "Logic Editor" (логический редактор).

► TRIGGER > "Тип запуска" = "Шаблон" > "Ред. шаблон"

Рис. 5-7: Запуск по шаблону с логическим редактором

В Н Х, Уст. все!	80
ארא ו א	81
	81
Истина Ложь	81
Time limitation (ограничение по времени)	81

В | Н | Х, Уст. все

Определение шаблона путем выбора состояния "Н" (высокое), "L" (низкое) ог "Х" (безразличное) для каждого активного аналогового и цифрового канала.

Длина слова шаблона зависит от количества доступных аналоговых и цифровых каналов.

Аналоговые каналы: 2 бита для 2-канальных приборов, 4 бита для 4-канальных приборов.

Цифровые (16 бит): логические каналы D0, D1,...,D15 доступны только с опцией смешанных сигналов -B1.

Таким образом, шаблон может иметь 2, 4, 18 или 20 бит.

Используйте значение "Уст. все!" (установить все), чтобы установить все каналы в одинаковое состояние.

Команда дистанционного управления: TRIGger:A:PATTern:SOURce на стр. 407

И | ИЛИ

Установка логической комбинации состояний каналов.

'AND"	Все определенные состояния должны быть истинными.

"OR" По крайней мере одно из определенных состояний должно быть истинно.

Komaнда дистанционного управления: TRIGger:A:PATTern:FUNCtion на стр. 408

Длительность

Данный переключатель выполняет два действия:

- Выбор режима сравнения Истина | Ложь (истина | ложь).
- Включение или выключение функции ограничения по времени Time limitation (ограничение по времени).

Истина | Ложь

Определение режима запуска прибора: при выполнении логических условий или при их нарушении.

- Если параметр Длительность включен, прибор запускается когда логическая комбинация истинна "есть Истина" или ложна "есть Ложь" для указанной временной длительности.
- Если параметр Длительность выключен, прибор запускается, когда логическая комбинация обнаруживается в сигнале ("станет Истина"), или когда она исчезает ("станет Ложь").

Komaнда дистанционного управления: TRIGger:A:PATTern:CONDition на стр. 408

Time limitation (ограничение по времени)

Чтобы установить временное ограничение для шаблона, имеется несколько возможностей. Они похожи на настройку длительности импульса, см. гл. 5.6, "Запуск по длительности", на стр. 75.

- "Таймаут" и "Время t" Определение минимального времени, в течение которого сигналы соответствуют условию шаблона.
- "Длит-ть >" или "Длит-ть <" и "Время t"
 Запуск, если условие шаблона изменяется до или после указанного времени.
- "Длит-ть =", "Время t1" и "Отклонение"
 Запуск, если условие шаблона выполняется для длительности "Время t1" ± "Отклонение".
- "Длит-ть ≠", "Время t1" и "Отклонение"
 Запуск, если условие шаблона выполняется для длительности меньше чем "Время t1" - "Отклонение" или больше чем "Время t1" + "Отклонение".
- "Внутри", "Время t1" и "Время t2"

Запуск, если условие шаблона выполняется для длительности между "Время t1" и "Время t2". Эти настройки являются альтернативными для определения с помощью параметра "Длит-ть =". Значения времени взаимозависимы и соответствующим образом подстраиваются.

 "Снаружи", "Время t1" и "Время t2"
 Запуск, если условие шаблона выполняется для длительности меньше чем "Время t1" или больше чем "Время t2". Эти настройки являются альтернативными для определения с помощью параметра "Длит-ть ≠". Значения времени взаимозависимы и соответствующим образом подстраиваются.

Komaнда дистанционного управления: TRIGger:A:PATTern:MODE на стр. 409 TRIGger:A:PATTern:WIDTh:RANGe на стр. 409 TRIGger:A:PATTern:WIDTh[:WIDTh] на стр. 409 TRIGger:A:PATTern:WIDTh:DELTa на стр. 410

5.9 Запуск по ранту

Под рантом понимается импульс с амплитудой ниже обычного значения. Значение амплитуды импульса два раза подряд пересекает первый порог, не пересекая при этом второй. Например, при использовании данного типа запуска происходит детектирование логических, цифровых и аналоговых сигналов, амплитуда которых находится ниже установленного порогового значения, поскольку порты ввода/вывода находятся в неопределенном состоянии.

TRIGGER > "Тип запуска" = "Рант"

Запуск по времени нарастания

Полярность	. 83
Верхний уровень	. 83
Нижний уровень	.83
Гистерезис	. 83

Полярность

Установка полярности импульса, т. е. направления перепада первого импульса.

- положительный импульс, длительность определяется от нарастающего до спадающего фронта.
- • отрицательный импульс, длительность определяется от спадающего до нарастающего фронта.
- 📰 выбор как положительного, так и отрицательного импульсов.

Команда дистанционного управления: TRIGger:A:RUNT:POLarity на стр. 411

Верхний уровень

Установка верхнего порога напряжения для обнаружения ранта. Отрицательный рант дважды пересекает верхний уровень, не пересекая нижний.

Команда дистанционного управления:

TRIGger:A:LEVel<n>:RUNT:UPPer Ha CTp. 410

Нижний уровень

Установка нижнего порога напряжения для обнаружения ранта. Положительный рант дважды пересекает нижний уровень, не пересекая верхний.

Komaнда дистанционного управления: TRIGger:A:LEVel<n>:RUNT:LOWer на стр. 410

Гистерезис

Гистерезис канала-источника запуска, см. "Гистерезис" на стр. 55.

Команда дистанционного управления: CHANnel<m>:THReshold:HYSTeresis на стр. 391

5.10 Запуск по времени нарастания

При запуске по времени нарастания, также известном как запуск по скорости нарастания или по переходу, происходит выборочное детектирование быстрых или медленных перепадов. Запуск по перепаду происходит, если время перехода от наименьшего к наибольшему значению уровня напряжения (или наоборот) меньше или больше заданного значения или находится вне или внутри установленного временного диапазона. При запуске по скорости нарастания происходит обнаружение напряжений, нарастающих со скоростью, превышающей ожидаемую или допустимую, для предотвращения возникновения перегрузки и других мешающих воздействий. Кроме того, происходит обнаружение медленных перепадов, нарушающих временную расстановку в последовательностях импульсов.

TRIGGER > "Тип запуска" = "Вр. нараст."

Запуск по времени нарастания

Полярность

Установка фронта, время перехода которого анализируется:

- Запуск по времени нарастания
- Запуск по времени спада
- Лапуск по времени нарастания и спада

Команда дистанционного управления: TRIGger:A:RISetime:SLOPe на стр. 412

Сравнение

Выбор способа задания временного предела для запуска по скорости нарастания. Измерение времени начинается при пересечении сигналом первого уровня запуска – верхнего или нижнего, в зависимости от выбранного перепада. Измерение останавливается при пересечении сигналом второго уровня.

"Greater than"	Запуск по времени перехода длиннее чем заданное время "Время нарастания".
"Lower than"	Запуск по времени перехода короче чем заданное время "Время нарастания".
"Equal"	Запуск по времени перехода внутри диапазона времени <i>Rise Time ± Variation</i> .
"Not equal"	Запуск по времени перехода за пределами диапазона времени <i>Rise Time ± Variation.</i>

Команда дистанционного управления: TRIGger:A:RISetime:RANGe на стр. 412

Время нарастания

Установка опорного времени нарастания, номинального значения для сравнения.

Komaнда дистанционного управления: TRIGger:A:RISetime:TIME на стр. 413

Отклонение

Определение диапазона времени в области заданного значения "Время нарастания".

Команда дистанционного управления: TRIGger:A:RUNT:DELTa на стр. 410

Верхний уровень

Установка верхнего порога напряжения. При пересечении сигналом этого уровня происходит запуск или остановка измерения скорости нарастания напряжения, в зависимости от выбранной полярности запуска.

Команда дистанционного управления: TRIGger:A:LEVel<n>:RISetime:UPPer на стр. 412

Нижний уровень

Установка нижнего порога напряжения. При пересечении сигналом этого уровня происходит запуск или остановка измерения скорости нарастания напряжения, в зависимости от выбранного перепада.

Значение соответствует пороговому уровню канала запуска.

Команда дистанционного управления: TRIGger:A:LEVel<n>:RISetime:LOWer на стр. 411

Гистерезис

Гистерезис канала-источника запуска, см. "Гистерезис" на стр. 55.

Kоманда дистанционного управления: CHANnel<m>:THReshold:HYSTeresis на стр. 391

5.11 Запуск по таймауту

При запуске по таймауту производится проверка нахождения сигнала выше или ниже порогового напряжения в течение заданного промежутка времени. Другими словами, запуск возникает, если сигнал запуска не пересекает пороговое значение в течение заданного времени.

Запуск по таймауту

Рис. 5-8: Запуск по таймауту с диапазоном Остается Высоким

TRIGGER > "Тип запуска" = "Таймаут"

Рис. 5-9: Меню запуска Таймаут

Диапазон

Выбор взаимосвязи уровня сигнала с уровнем запуска:

Остается Выс Уровень сигнала остается выше уровня запуска. оким

Остается Низ- Уровень сигнала остается ниже уровня запуска. ким

Остается Выс|Низк

Уровень сигнала остается выше или ниже уровня запуска.

Команда дистанционного управления: TRIGger:A:TIMeout:RANGe на стр. 413

Время

Определение временного предела для таймаута, при котором происходит запуск прибора.

Komaндa дистанционного управления: TRIGger:A:TIMeout:TIME на стр. 413

Порог

Пороговое значение канала-источника запуска, используемое в качестве уровня запуска по таймауту.

См. также "Порог" на стр. 55 и "Ур. запуска, Порог" на стр. 73. Команда дистанционного управления: TRIGger:A:LEVel<n>[:VALue] на стр. 402 CHANnel<m>: THReshold на стр. 390

Гистерезис

Гистерезис канала-источника запуска, см. "Гистерезис" на стр. 55.

Команда дистанционного управления: CHANnel<m>:THReshold:HYSTeresis на стр. 391

6 Анализ осциллограмм

•	Масштабирование	
•	Математические операции	91
•	Опорные осциллограммы	
•	Архив и сегментированная память (опция R&S RTM-K15)	
•	Функции поиска	

6.1 Масштабирование

Функция масштабирования позволяет увеличивать часть осциллограммы для более детального рассмотрения. Масштабирование применяется ко всем активным аналоговым и цифровым каналам и расчетным осциллограммам. Осциллограммы отображаются с увеличенным масштабом по времени, в то время как масштаб по вертикали остается неизменным.

► Чтобы активировать функцию масштабирования, нажмите клавишу ZOOM.

При активации функции масштабирования отображается два окна: диаграмма с исходной осциллограммой сверху и окно масштабирования снизу.

6.1.1 Использование функции масштабирования

Существует несколько способов регулировки масштабирования:

- Используйте пальцевые жесты на экране.
- Используйте поворотные ручки для горизонтальных и вертикальных настроек SCALE и POSITION.
- Используйте меню для ввода точных числовых значений. См. гл. 6.1.2, "Настройки масштабирования", на стр. 90.
 Альтернативный вариант: коснитесь шкалы или метки положения в окне масштабирования и введите соответствующее значение на клавишной панели.

Масштабирование

Рис. 6-1: Масштабированное отображение: увеличенный масштаб в нижнем окне, обычная осциллограмма в верхнем окне

= Коснитес	ь для активации настрое	к масштабирования

- = Коснитесь для активации настроек обычной осциллограммы
- 3 (синий) = Масштаб и ширина области масштабирования
- 4 (красный) = Положение области масштабирования 5
- = Частота дискретизации в окне масштабирования 6
 - = Масштаб и положение по горизонтали обычной осциллограммы

Настройка масштабирования с помощью жестов

- 1. Чтобы изменить положение области масштабирования, переместите палец в окне масштабирования по горизонтали.
- 2. Чтобы изменить масштаб и ширину области масштабирования, разведите или сведите два пальца в горизонтальном направлении.

Настройка масштабирования с помощью поворотных ручек горизонтальных настроек

- 1. Чтобы установить фокус ввода на окно масштабирования (нижнее окно), коснитесь пальцем окна масштабирования.
- 2. Чтобы менять масштаб и ширину области масштабирования, поворачивайте ручку масштаба SCALE.

1 2

- 3. Чтобы менять положение области масштабирования, поворачивайте ручку положения POSITION.
- Чтобы установить фокус ввода на окно обычной осциллограммы, коснитесь пальцем верхнего окна.

Теперь действие поворотных ручек применяется к обычной осциллограмме, они регулируют масштаб и положение осциллограммы по горизонтали.

6.1.2 Настройки масштабирования

Настройки масштабирования приведены в меню "По горизонтали".

- 1. Если функция масштабирования отключена, нажмите клавишу ZOOM, чтобы ее активировать.
- 2. Нажмите клавишу HORIZONTAL.

Коэффициент масштабирования

Определение горизонтального масштаба для окна масштабирования в секундах на деление. Масштаб определяет ширину области масштабирования (12 делений * масштаб на деление), ось времени окна масштабирования. Масштабированная область указывается в окне исходной осциллограммы.

Команда дистанционного управления: TIMebase: ZOOM: SCALe на стр. 414

Позиция масштабирования

Определение расстояния по времени от точки запуска до опорной точки в окне масштабирования. Значение определяет положение области масштабирования в верхнем окне.

Команда дистанционного управления: TIMebase: ZOOM: TIME на стр. 414

6.2 Математические операции

Расчетные осциллограммы являются результатом вычислений. Они вычисляются по одному или двум аналоговым каналам, константам или другим расчетным осциллограммам с помощью нескольких предварительно заданных операций. Можно задать до 5 расчетных осциллограмм.

Расчетные осциллограммы можно анализировать таким же образом, что и канальные осциллограммы: с помощью функции масштабирования выполните автоматические или курсорные измерения и сохраните текущую осциллограмму в качестве опорной.

Сокращенное меню

На ярлыке расчетной осциллограммы в нижней части экрана отображаются основные настройки расчетной осциллограммы: источники, операции, единицы измерения и масштаб по вертикали. В сокращенном меню отображается состояние всех расчетных осциллограмм.

- 2 = отобразите расчетную осциллограмму
- 3 = выберите расчетную осциллограмму для настройки масштаба и положения
- Меню = откройте меню "Матоперации" и редактор "Редактор формул"
 - = отключите матоперации

6.2.1 Конфигурирование расчетных осциллограмм

1. Нажмите клавишу МАТН.

Расчетные осциллограммы будут активированы с использованием последних сделанных настроек.

2. Снова нажмите клавишу МАТН.

Откроется меню "Матоперации" и редактор "Редактор формул".

 Сконфигурируйте уравнения расчетных осциллограмм в редакторе "Редактор формул". Можно задать до 5 уравнений. Полную конфигурацию можно сохранить в виде набора формул для последующего использования.

- коснитесь строки расчетной осциллограммы, которую необходимо настроить.
- Утобы активировать расчетную осциллограмму, установите ее состояние "Состояние".
- с) Выберите "Операция".
- d) Выберите "Источник(и)", операнды математического уравнения: 1 или 2 аналоговых канала, константы или расчетные осциллограммы. Доступны только расчетные осциллограммы более низкого порядка, например, М2 может быть источником для М3, М4 и М5. Для М1 источники в виде расчетных осциллограмм недоступны.
- е) Выберите "Ед. измер.".
- f) Дополнительно к расчетной осциллограмме можно добавить ярлык.
 Ярлык отображается с правого края масштабной сетки.
- 4. Закройте "Редактор формул".
- 5. Настройка масштаба и положения по вертикали:
 - а) Выберите расчетную осциллограмму в сокращенном меню.
 - b) Используйте поворотные ручки функционального блока Vertical на передней панели. См.: гл. 4.2.1, "Органы управления функционального блока VERTICAL", на стр. 47.

6.2.2 Настройки расчетных осциллограмм

В меню "Матоперации" содержатся общие математические настройки:

- Включение и выключение математических операций.
- Сохранение заданных уравнений в файле набора уравнений.
- Загрузка ранее сохраненного набора уравнений.

В редакторе "Редактор формул" конфигурируется до 5 расчетных осциллограмм и задается их видимость. Каждое уравнение состоит из одного или двух операндов и оператора. Операндом может быть входной канал, константа или расчетная осциллограмма с более низким номером.

Математические операции

Equation	Set Editor						?	×	C
State	Label		Source(s)		Operation	Unit			t _×
M1	FIRST	<mark>C1</mark>	C1		Addition	۷			Mathematics
		<mark>C2</mark>	C2						State
M2	M2	<mark>C1</mark>	C1 .	•	Subtraction 🗸	۷		•	
		Const	2 •						🞦 Load
МЗ	M3	C1	C1		Multiplication	۷			Save
0		M1	FIRST						
M4	M4	C1	C1		Division	۷			
0		<mark>C2</mark>	C2						
M5	M5	C1	c1		Addition	۷			
0		C2	C2						

Рис. 6-2: Меню Матоперации и редактор Редактор формул

Доступны следующие операции:

Addition (сложе- ние)		Ор1 + Ор2 Сложение двух операндов.
Subtraction (вычитание)		Ор1 - Ор2 Вычитание второго операнда из первого.
Multiplication (умножение)		Ор1 * Ор2 Умножение двух операндов.
Division (деле- ние)		Деление первого операнда на второй. Для небольших амплитуд второго операнда результат быстро растет. Если второй операнд пересекает нулевое значение, результат может лежать в диапазоне от +∞ до -∞. В данном случае, вместо 0 В расчетная функция использует значение наименьшего значащего бита (LSB) второго операнда. (Для 8- битного значения, например, используется значение 1/256).
Square (квадрат)	₩	Op1 * Op1 Возведение операнда в квадрат. Если операнд содержит отри- цательные значения, которые были ограничены, то результат будет содержать положительное ограничение.

Анализ осциллограмм

Square Root (квадратный корень)		Square Root (Op1) Вычисление квадратного корня операнда. Обратите внимание, что квадратный корень отрицательного числа не определен, и результат ограничивается.
Abs. Value (абсо- лютное значе- ние)	00	Op1 Вычисление абсолютного значения (модуля) операнда. Все отрицательные значения инвертируются в положительные. Положительные значения остаются без изменений. Если опе- ранд содержит отрицательные значения, которые были огра- ничены, то результат будет содержать положительное ограни- чение.
Reciprocal (обратная вели-	d d)	1V / Ор1 Деление 1 В на значения операнда.
чина)	N N	Для небольших амплитуд операнда результат быстро растет. Если операнд пересекает нулевое значение, результат может лежать в диапазоне от +∞ до -∞. В данном случае, вместо 0 В расчетная функция использует значение наименьшего знача- щего бита (LSB) операнда. (Для 8-битного значения, напри- мер, используется значение 1/256).
Inverse (инвер- сия)	0000	Инвертирование всех значений напряжения операнда, т.е. все значения зеркально отражаются относительно уровня земли. В результате, положительное смещение напряжения стано- вится отрицательным. Если амплитуда операнда ограничи- вается, результатом будет инвертированное ограничение.
Common Log. (десятичный логарифм)		log (Op1) Вычисление логарифма по основанию 10 от операнда. Обрат- ите внимание, что логарифм отрицательного числа не опреде- лен, и результат ограничивается.
Natural Log. (натуральный логарифм)		In (Op1) Вычисление логарифма по основанию е (число Эйлера) от операнда. Обратите внимание, что логарифм отрицательного числа не определен, и результат ограничивается.
Derivative (про- изводная)	din dt	 f(Op1) Производная соответствует росту касательной через точку функции и указывает размерность изменения величины опе- ранда во времени. Чем больше изменяется величина опе- ранда за единицу времени, тем больше результат производ- ной. Вычисление аппроксимируется с помощью секущей на основе текущего расчетного значения и значения шириной 0,1 деле- ния. Вследствие этого ось времени имеет конечное малое раз- решение. Поэтому для правильного отображения требуемой области следует соответствующим образом масштабировать вхолной сигнап.

Integral (инте- грал)	Вычисление определенного интеграла от операнда. Вычисление показано на рисунке. Интегрирование начинается в точке "а" и суммирует площадь под осциллограммой. Точка "b" обозначает текущее расчетное значение. В конце положи- тельной полуволны интегральная функция достигает своего максимума. Из-за униполярного операнда, используемого в этом примере, график площади достигает нуля после отрица- тельной полуволны. Используйте курсор типа "V-Marker", чтобы измерить площадь под участком осциллограммы.
Low pass (ФНЧ)	IIR (Op1,fg=Op2) Вычисление осциллограммы сигнала, проходящего через фильтр нижних частот, для операнда "Operand 1". Частота среза fg устанавливается константой "Operand 2". Составляю- щие сигнала с частотами выше частоты среза значительно ослабляются.
High Pass (ФВЧ)	IIR (Op1,fg=Op2) Вычисление осциллограммы сигнала, проходящего через фильтр верхних частот, для операнда "Operand 1". Частота среза fg устанавливается константой "Operand 2". Составляю- щие сигнала с частотами ниже частоты среза значительно ослабляются.

Команды дистанционного управления:

- CALCulate:MATH<m>:STATe Ha ctp. 415
- CALCulate:MATH<m>[:EXPRession][:DEFine] Ha CTP. 416
- CALCulate:MATH<m>:POSition Ha ctp. 416
- CALCulate:MATH<m>:SCALe Ha CTP. 417
- Передача осциллограммы: см. гл. 17.9.1.3, "Math Waveforms", на стр. 488
- Данные архива: см. гл. 17.6.5.2, "Displaying History Segments", на стр. 441 и гл. 17.6.5.3, "Timestamps", на стр. 444

6.3 Опорные осциллограммы

Чтобы сравнивать осциллограммы и анализировать разницу между ними, в приборе предусмотрена возможность отображения опорных осциллограмм.

Опорные осциллограммы представляют собой данные об осциллограмме, хранящиеся во внутренней памяти прибора. Для хранения и отображения доступно четыре опорные осциллограммы: R1 ... R4.

Отображение опорной осциллограммы не зависит от отображения исходной осциллограммы; можно изменять как вертикальные, так и горизонтальные масштабы и положения. Текущие значения масштаба показываются на ярлыке опорной осциллограммы.

Сокращенное меню

В сокращенном меню отображается состояние всех опорных осциллограмм.

Опорные осциллограммы

1 = выберите опорную осциллограмму

2 = отобразите опорную осциллограмму

3 = ярлык опорной осциллограммы с масштабом по вертикали и горизонтали, номером и источником осциллограммы

Формат файла

Осциллограммы могут сохраняться в виде опорных осциллограмм. Для сохранения используется формат файлов TRF. Файлы могут сохраняться и загружаться с внутренней памяти или внешнего USB-носителя.

TRF - это специальный двоичный формат для опорных осциллограмм прибора R&S RTM3000/RTA4004. Он содержит амплитудное значение каждого отсчета, который отображается на экране (длиной 8 или 16 бит). Для осциллограмм пикового детектирования сохраняются 2 значения на отсчет. Файл содержит также информацию о времени (время первого отсчета и интервал дискретизации) и текущих настройках прибора.

Данные могут быть загружены в виде опорной осциллограммы для дальнейшего использования в приборе. Формат не предназначен для анализа вне прибора R&S RTM3000/RTA4004.

6.3.1 Использование опорных осциллограмм

Создание и отображение опорных осциллограмм

- 1. Чтобы активировать опорную осциллограмму и открыть меню "Опорные", дважды нажмите клавишу REF.
- 2. Чтобы создать опорную кривую из активной осциллограммы:
 - а) Выберите осциллограмму "Источник".
 - b) Выберите целевое назначение "Опорное".
 - с) Коснитесь "Копировать".

Новая опорная осциллограмма создается поверх оригинальной, получая фокус ввода.

3. Чтобы изменить масштаб и положение, используйте поворотные ручки для горизонтальных и вертикальных настроек POSITION и SCALE.

См. также:

- гл. 4.2.1, "Органы управления функционального блока VERTICAL", на стр. 47
- гл. 4.3.1, "Органы управления функционального блока HORIZONTAL", на стр. 57

Сохранение осциллограммы в виде опорной осциллограммы

В виде опорной осциллограммы можно сохранить в файл любую активную осциллограмму.

- Чтобы открыть меню "Опорные", коснитесь значка меню ◆ и выберите пункт "Опорные".
- 2. Коснитесь функции "Сохранить опорную".
- 3. Выберите осциллограмму, которую нужно сохранить: "Источник".
- 4. Коснитесь функции "Назначение".
- Выберите пункт "Location" (размещение) (внутри прибора или на USB-устройстве).
- 6. Если сохранять файл на USB-носителе, можно выбрать целевую папку.
 - а) Выполните двойное касание целевой папки. Если папки не существует, можно создать новую.
 Откроется выбранная папка.
 - b) Коснитесь функции "Accept Dir.".
- 7. При необходимости измените имя файла "Имя файла".
- 8. Дополнительно можно добавить комментарий.
- 9. Коснитесь функции "Сохранить".
- 10. Закройте диалоговое окно.

Загрузка опорной осциллограммы

- Чтобы открыть меню "Опорные", коснитесь значка меню ◆ и выберите пункт "Опорные".
- 2. Выберите целевую опорную осциллограмму "Опорное".
- 3. Коснитесь функции "Загрузить опорную".
- Выберите пункт "Location" (размещение), папку и файл опорной осциллограммы.
- 5. Коснитесь функции "Load" (загрузить).

Прибор запишет данные осциллограммы в выбранную опорную осциллограмму и выведет ее на экран.

Опорные осциллограммы

6.3.2 Настройки опорных осциллограмм

- Открытие меню "Опорные":
 - а) Коснитесь значка меню 🗇 в нижнем правом углу экрана.
 - b) Прокрутите список. Выберите пункт "Опорные".

Источник	
Опорное	
Копировать	
Состояние	
Загрузить опорную	
Загрузить настройки	
Сохранить опорную	
Цвет осциллограммы	100
Метка	
L Бит	
L Метка	
L Предуст. метка	100
L Ред. метки	

Источник

Определение источника опорной осциллограммы. Можно выбрать любой канал, расчетную или опорную осциллограмму.

Команда дистанционного управления: REFCurve<m>:SOURce на стр. 419 REFCurve<m>:SOURce:CATalog? на стр. 419

Опорное

Выбор одной из четырех возможных опорных осциллограмм.

Копировать

Копирование осциллограммы-источника "Источник" в выбранную опорную осциллограмму. Опорная осциллограмма сохраняется до своего обновления или загрузки другой осциллограммы в качестве опорной.

Команда дистанционного управления: REFCurve<m>:UPDate на стр. 420

Состояние

Активация опорной осциллограммы и отображение ее на экране.

Команда дистанционного управления: REFCurve<m>:STATe на стр. 419

Загрузить опорную

Функции для загрузки опорной осциллограммы.

Выберите размещение "Location" файла осциллограммы (внутри прибора или на USB-устройстве) и сам файл. Коснитесь функции "Загрузить опорную".

Также в данном диалоговом окне можно удалить устаревшие файлы.

Команда дистанционного управления: REFCurve<m>:LOAD на стр. 420

Загрузить настройки

Загрузка настроек прибора, которые были использованы для получения сохраненной опорной осциллограммы. Данные настройки доступны только в том случае, если файл был сохранен во внутреннем хранилище и никогда не записывался на USB-носитель.

Сначала загрузите опорную осциллограмму, а затем настройки. Если настройки не сохранены, кнопка "Загрузить настройки" не активна.

Команда дистанционного управления: REFCurve<m>:LOAD:STATe на стр. 420

Сохранить опорную

Открытие диалогового окна для сохранения осциллограммы в виде опорной осциллограммы:

- "Источник" Выберите сохраняемую осциллограмму. Можно сохранить любой активный канал расчетную или опорную осциллограмму или логический блок.
- "Назначение" Выберите размещение "Location" "Location" (внутренний каталог или USB-носитель) и целевой каталог.

Архив и сегментированная память (опция R&S RTM-K15)

"Имя файла" Введите имя файла. Если файл с таким же именем уже существует в каталоге назначения, он будет перезаписан без предупреждения.

"Коммента- Дополнительно можно ввести текст с описанием осциллограммы. рий"

"Сохранить" Сохранение данных.

Команда дистанционного управления: REFCurve<m>:SAVE на стр. 420

Цвет осциллограммы

Выбор цвета для опорной осциллограммы. Стандартным цветом является белый. Можно выбрать другой монохромный цвет или цветовую шкалу.

Цветовые шкалы описаны в разделе "Цвет осциллограммы" на стр. 53.

Команда дистанционного управления: REFCurve<m>:WCOLor на стр. 422

Метка

Открытие меню для задания пользовательских текстовых меток отдельным опорным осциллограммам.

Выбор опорной осциллограммы для маркировки.

Метка - Метка

Включение или отключение пользовательской метки для выбранной опорной осциллограммы.

Предуст. метка ← Метка

Выбор предварительно заданного текста ярлыка. Можно отредактировать текст с помощью функции "Ред. метки".

Открытие экранной панели клавиш для ввода текста ярлыка. Если ранее был выбран предварительно заданный ярлык, он уже написан в строке ввода, и его можно изменить.

Максимальная длина имени составляет 8 символов, могут использоваться только ASCII-символы, содержащиеся на экранной панели клавиш.

Команда дистанционного управления: REFCurve<m>:LABel на стр. 422

6.4 Архив и сегментированная память (опция R&S RTM-K15)

С помощью функции архива и сегментированной памяти можно получать доступ к ранее захваченным осциллограммам и проводить их анализ. Например, можно

Архив и сегментированная память (опция R&S RTM-K15)

проводить анализ сигналов, возникающих в виде коротких импульсов при длительных периодах бездействия, в процессе пакетного обмена по последовательным шинам, а также радиолокационные и лазерные импульсы. Сегментированная память используется для хранения осциллограмм и содержит таблицу сегментов для анализа сохраненных осциллограмм.

Архивные сегменты могут анализироваться тем же способом, что и последний захваченный сигнал. Доступны все виды измерений и инструменты анализа прибора R&S RTM3000/RTA4004: масштабирование, курсорные измерения, быстрые и автоматические измерения, тестирование по маске, анализ последовательных протоколов, функции смешанных сигналов и т. д.

Таблица сегментов и осциллографические данные архивных сегментов могут быть сохранены в файл.

Режим быстрой сегментации уменьшает время простоя на этапе сбора данных.

6.4.1 Сегментированная память

При запущенной процедуре сбора данных прибор сохраняет полученные данные в память, выполняет обработку данных и отображает осциллограмму. Сегментированная память позволяет хранить не только данные отображаемой осциллограммы, но и данные осциллограмм, которые были получены ранее. Каждая сохраненная осциллограмма называется сегментом. Длина записи сегментов может быть задана пользователем. Количество сегментов определяется значением длины записи. Чем меньше длина записи, тем больше сегментов может быть сохранено.

Рис. 6-3: Сегментированная память. В этом примере в памяти может быть сохранено 10 осциллограмм (сегментов).

Каждому сегменту присваивается временная метка для указания момента возникновения события. Функция архива позволяет получить доступ к сохраненным сегментам для их отображения. При запуске новой процедуры сбора данных память очищается и перезаписывается.

В процессе сбора данных функция архива сохраняет следующие данные:

- Все активные аналоговые каналы.
- Все логические каналы при хотя бы одном активном (с опцией -В1).
- Декодированные данные шины при активной шине (хотя бы с одной опцией декодирования последовательного протокола, например, -К1 или -К2).

Быстрая сегментация

В ходе обычной процедуры сбора данных лишь малая часть цикла сбора данных отводится на взятие отчетов; основную часть времени занимают обработка и отображение. Время, затрачиваемое на обработку и отображение, называется временем простоя и является причиной наличия промежутков в записанном сигнале. Для обычных процедур сбора данных высока вероятность пропуска кратковременных и редко возникающих событий, попадающих на время простоя.

Для уменьшения времени простоя и, как следствие, снижения вероятности пропуска событий используется режим быстрой сегментации.

В режиме быстрой сегментации происходит очень быстрый захват данных с крайне незначительным временем простоя между выборками. По завершении захвата всех сегментов выполняется обработка данных, и отображается последняя осциллограмма. Программа просмотра содержимого архива позволяет просматривать и анализировать все сохраненные сегменты осциллограммы.

6.4.2 Настройки функции архива

Настройки функции архива и сегментации расположены в меню "Архив".

- 1. Нажмите клавишу ACQUISITION в области Horizontal на передней панели.
- Если необходимо установить отдельную длину записи или количество сегментов, отключите "Авто".
 В режиме "Авто" длина записи устанавливается в меню "Сбор данных".
- Установите параметр "Длина записи" или "Кол-во сегментов". Длина записи и количество сегментов взаимозависимы, если устанавливается один параметр, другой параметр настраивается прибором.
- 4. Установите количество осциллограмм, захватываемых в режиме сбора SINGLE: см. "Nx однокр." на стр. 64.
- 5. При необходимости включите режим Быстр. сегментация.

Архив и сегментированная память (опция R&S RTM-K15)

Авто

Определите способ установки длины записи и количества сегментов: автоматически прибором или путем ручной установки длины записи или количества сегментов.

В автоматическом режиме выбирается предварительно заданная комбинация длины записи и количества сегментов в меню "Сбор данных".

Команда дистанционного управления: ACQuire:MEMory[:MODE] на стр. 395

Длина записи

Отображение или установка длины записи, в зависимости от настройки параметра "Кол-во сегментов". Количество отсчетов сигнала, сохраняемых в одной сигнальной записи, называется длиной записи. Количество доступных архивных сегментов настраивается автоматически.

Komahda ductahuohhoro ynpabnehus: ACQuire:POINts:AUTomatic Ha ctp. 395 ACQuire:POINts[:VALue] Ha ctp. 395

Кол-во сегментов

Установка количества архивных сегментов в памяти. Длина записи соответствующим образом регулируется.

См. также:гл. 6.4.1, "Сегментированная память", на стр. 101

Быстр. сегментация

Включение режима сегментации, в котором выполняется высокоскоростной сбор данных без обработки и отображения осциллограмм. При остановке цикла сбора данных выполняется обработка данных, и отображается последняя осциллограмма. Более ранние осциллограммы сохраняются в виде сегментов. Отобразить и проанализировать эти сегменты можно с помощью функции архива.

См. также:гл. 6.4.1, "Сегментированная память", на стр. 101

Komaндa дистанционного управления: ACQuire:SEGMented:STATe на стр. 440

6.4.3 Отображение сегментов архива

Можно вывести все сегменты архива последовательно или отобразить только отдельный сегмент.

- 1. Включите функцию архива.
- 2. Установите формат времени "Time Format", который будет использоваться в таблице: абсолютное или относительное время.
- 3. Установите скорость "Speed".
- 4. Для однократного воспроизведения всех сегментов коснитесь кнопки "Run".
- 5. Повторяющееся воспроизведение всех сегментов:
 - a) Активируйте кнопку "Repeat" (повтор).
 - b) Коснитесь кнопки "Run".
- 6. Для доступа к конкретному сегменту можно выполнить следующие действия:
 - Коснуться сегмента в таблице сегментов.
 - Перетаскивать ползунок до тех пор, пока не отобразится требуемый сегмент.
 - Коснуться кнопки "Number" и ввести номер сегмента. Самый последний сегмент всегда имеет номер "0". Более ранние сегменты имеют отрицательные номера.
 - Используйте кнопки "Prev." (предыдущий) и "Next" (следующий), чтобы отобразить соседние сегменты.
- Если сегменты архива содержат данные нескольких каналов и необходимо проанализировать только один или несколько каналов, отключите все ненужные каналы.

6.4.4 Программа воспроизведения таблицы сегментов и архивных данных

Сегменты памяти записываются в течение всего времени выполнения сбора данных. При активации функции архива сбор данных останавливается и открывается таблица сегментов. В таблице сегментов показаны индексы и временные метки всех сегментов архива, а также информация о режиме захвата сегмента (по событию запуска или в автоматическом режиме). Под таблицей расположены все функции для просмотра сегментов, хранящихся в памяти.

Архивные сегменты хранят данные текущих активных каналов. Можно осуществлять одновременный сбор данных по нескольким каналам, а также отображать и анализировать каналы по отдельности.

Включение функции архива

- 1. Коснитесь значка "Меню".
- 2. Выберите функцию архива "History".

Архив и сегментированная память (опция R&S RTM-K15)

Сбор данных останавливается и отображается программа воспроизведения архивных данных. Кнопка "History" в меню остается синей до тех пор, пока активен режим архива.

\$	Segment	Table 🗙											\$
	Number	Trigger		Relative Time							Time Format		
	-227	Trg	d			612.0	09	708	8 m s		Relative Time	•	
	-228	Trg	d			614.3	09	747	2 m s				
	-229	Trg	d			616.7	09	785	6 m s				
	-230	Trg	d			619.1	09	824	0 m s				
	-231	Trg	d			621.5	09	862	4 m s				
	-232	Trg	d			623.9	09	900	8 m s				
	-233	Trg	d			626.2	09	939	2 m s				
-396				-233		0		44		\rightarrow			
										(\mathbf{r})			
							Run	Prev.	Next	Repeat	Speed Number		
C1	500 m ¹	v/	DC 0:1	2	СЗ	C4							Menu

Можно закрыть таблицу сегментов и использовать только программу воспроизведения архивных данных для просмотра сегментов. Чтобы снова отобразить таблицу сегментов, коснитесь кнопки "History" в меню.

Выключение функции архива

- 1. Коснитесь значка "Меню".
- Касайтесь кнопки "History" до тех пор, пока она не станет серой и не закроются таблица сегментов и программа воспроизведения архивных данных.

Функции в таблице сегментов и программе воспроизведения архивных данных

Time Format (формат времени)

Установка формата метки времени. Метка времени указывает время отображаемого в данный момент архивного сегмента. Таким образом, всегда доступны временные соотношения между выборками. Говоря точнее, метка времени - это время события запуска.

Метка времени может иметь абсолютный или относительный формат

• Absolute (абсолютный): Дата и дневное время события запуска отображаемого сегмента.

В зависимости от положения по горизонтали осциллограмма может быть захвачена максимум через 100000 секунд после события запуска и, следовательно, после отображаемой метки времени. Прибор учитывает эту задержку автоматически, все измерения соотносятся с событием запуска.

 Relative (относительный): разница во времени между текущим сегментом и самым последним (новым) сегментом (index = 0).

Команда дистанционного управления: гл. 17.6.5.3, "Timestamps", на стр. 444

Архив и сегментированная память (опция R&S RTM-K15)

Save (сохранить)

Сохранение таблицы сегментов в файл формата CSV. Файл содержит все метки времени: относительное время, время до предыдущих меток и абсолютное время. Чтобы сохранить сегменты осциллограммы, используйте клавишу SAVE LOAD > "Осцилл-мы".

См. также: гл. 6.4.5, "Экспорт архивных данных", на стр. 107.

Komahda ductahuonhoro ynpabnehus: EXPort:ATABle:NAME Ha ctp. 449 EXPort:ATABle:SAVE Ha ctp. 449

Run / Stop (пуск/стоп)

Запуск и остановка воспроизведения архивных сегментов.

Команда дистанционного управления: ...:HISTory:PLAYer:STATe

Prev. (предыдущий)

Возврат к следующему, более старому сегменту.

Next (следующий)

Переход к следующему, более новому сегменту.

Repeat (повтор)

Если функция выбрана, воспроизведение выбранных сегментов архива автоматически повторяется.

Команда дистанционного управления: ...:HISTory:REPLay

Speed (скорость)

Установка скорости для воспроизведения архива данных: автоматическая, медленная, средняя или быстрая.

Команда дистанционного управления: ...:HISTory:PLAYer:SPEed

Number (номер)

Обеспечивает доступ к конкретному сегменту архива в памяти с целью его отображения. Самый последний сегмент всегда имеет индекс "0". Более ранние сегменты имеют отрицательные индексы. Можно также перетаскивать ползунок, который находится над значками. Текущий сегмент показывается в панели индекса.

Команда дистанционного управления: ...:HISTory:CURRent

Average (усреднение)

Вычисление и отображение среднего значения текущего и предыдущих сегментов. На последнем по времени сегменте отображается среднее всех сегментов. Перезапуск программы воспроизведения сбрасывает расчет среднего. Для усреднения необходим стабильный, синхронизированный и повторяемый сигнал.

Envelope (огибающая)

Отображение огибающей, которая строится по максимальным и минимальным значениям текущих и предыдущих сегментов. На последнем по времени сегменте отображается огибающая всех сегментов. Перезапуск программы воспроизведения сбрасывает расчет огибающей.

Overlay (наложение)

Отображение сегментов с бесконечным временем послесвечения. Таким образом, можно наблюдать все точки данных всех отображаемых сегментов цикла воспроизведения.

6.4.5 Экспорт архивных данных

Сегменты архива могут быть сохранены в виде файлов на флэш-накопитель USB, даже если режим архива не активирован. Для сохранения могут быть выбраны все видимые каналы или только один канал. Кроме того, можно сохранить полную информацию о времени из таблицы сегментов.

6.4.5.1 Сохранение архива данных в файл

Прежде чем можно будет сохранить архивные данные, необходимо захватить осциллограмму и активировать функцию архива так, чтобы была видна таблица сегментов.

Сохранение сегментов архива осциллограмм

- 1. Подключите к прибору флэш-накопитель USB.
- 2. Нажмите клавишу SAVE LOAD.
- 3. Выберите пункт "Осцилл-мы" в меню.
- 4. В разделе "Точки" выберите пункт "History Data".
- 5. В разделе "Источник" выберите сохраняемые каналы: все видимые или только один из них.
- Введите имя файла "Имя файла". Это имя будет именем каталога, в котором содержатся файлы сегментов. Используется формат файлов CSV.

Архив и сегментированная память (опция R&S RTM-K15)

Save - Waveforms				?	×		
Destination							
/USB_FRONT							
File Name				Auto	Name		
HIST_A03					X		
Format	Source		Points				
CSV	Vis. Channels	*	History Data		*		
Samples: 107 144 x 2 No. of Segments: 32 File size (approx.): 3 558 kB Time required (approx.): 6 min							
Sample number may be reduc	ed due to running acquisitio	n.					
Save			Close				

- Для выбора целевого каталога коснитесь поля "Назначение". Местом размещения всегда будет "/USB_FRONT", сохранение во внутреннем хранилище не поддерживается.
- 8. Коснитесь кнопки "Сохранить".

В открывшемся сообщении будет показываться ход выполнения процедуры сохранения.

9. Закройте диалоговое окно.

Сохранение таблицы сегментов

- 1. Подключите к прибору флэш-накопитель USB.
- 2. В окне таблицы сегментов коснитесь кнопки "Сохранить".
- 3. Для выбора целевого каталога выполните двойное касание на нем.
- 4. Коснитесь кнопки "Создать файл".
- 5. Введите имя файла.
- 6. Коснитесь кнопки "Enter".

Файл будет немедленно сохранен, окно закроется.

6.4.5.2 Содержимое и организация файлов

Таблица сегментов и сегменты архива данных сохраняются в файлах формата CSV.

Таблица сегментов

Файл таблицы сегментов содержит все информацию, которая показана в таблице, включая все временные метки: относительное время, время до предыдущих меток и абсолютное время.
Архив и сегментированная память (опция R&S RTM-K15)

	-		<u> </u>		-		, , , , , , , , , , , , , , , , , , ,
1		Date	Time				
2	Start of Acquisition	2017-10-13	13:55:19				
3	Last Acquisition	2017-10-13	13:55:27				
4	Acquisitions	53					
5	Number	Relative Time	Time to Previous	Date	Time		Trigger
6	0	-0.00000000000000E+00	5.02901539200000E-01	2017-10-13	13:55:27	0.000000000E+00	Auto
7	-1	-5.029015392000000E-01	1.23412259200000E-01	2017-10-13	13:55:26	4.9709846080E-01	Trg'd
8	-2	-6.263137984000000E-01	1.00466400000000E-02	2017-10-13	13:55:26	3.7368620160E-01	Trg'd
9	-3	-6.363604384000000E-01	1.00116960000000E-02	2017-10-13	13:55:26	3.6363956160E-01	Tra'd

Рис. 6-4: Содержимое файла таблицы сегментов

Осциллограммы

Каждый сегмент сохраняется в отдельный файл, а все файлы с сегментами записываются в каталог, который содержит только файлы с сохраненными собранными данными. Можно указать имя каталога. В имена файлов данных включен индекс сегмента.

퉬 WFM01	
퉬 WFM02	
퉬 WFM06	
퉬 WFM07	C1_0.CSV
	🔁 C1_1.CSV
	🔂 C1_2.CSV
	C1_3.CSV
	🔁 C1_4.CSV
	C1_5.CSV
	INDEX.CSV

Рис. 6-5: Содержимое каталога архива осциллограмм

Файлы данных содержат данные о времени и напряжении отсчетов. При сохранении всех видимых каналов напряжения всех каналов записываются в один файл.

in s,C1 in V,C2 in V
-3.00000E-04,-5.518E-03,2.540E-01
-2.99994E-04,-6.982E-03,2.510E-01
-2.99989E-04,-6.982E-03,2.515E-01
-2.99983E-04,-6.982E-03,2.510E-01
-2.99978E-04,-6.006E-03,2.515E-01
-2.99972E-04,-6.982E-03,2.530E-01
-2.99966E-04,-9.424E-03,2.505E-01
-2.99961E-04,-6.982E-03,2.500E-01
-2.99955E-04,-6.494E-03,2.544E-01
-2.99950E-04,-5.518E-03,2.505E-01

Рис. 6-6: Содержимое файла сегментов архива, сохранены два канала

В дополнение к файлам данных производится запись индексного файла. В индексном файле содержится информация о файлах и сегментах. Для каждого сегмента указываются индекс, дата и время сохранения, а также имя файла.

Number,Date,Time,Thousandths in ms,Filename
0,2017-04-18,16:18:10,0.000000000e0,C1_0.CSV
-1,2017-04-18,16:18:09,994.600019200e-3,C1_1.CSV
-2,2017-04-18,16:18:09,989.699993600e-3,C1_2.CSV
-3,2017-04-18,16:18:09,984.80000000e-3,C1_3.CSV
-4,2017-04-18,16:18:09,979.499961600e-3,C1_4.CSV
-5,2017-04-18,16:18:09,974.599961600e-3,C1_5.CSV

Рис. 6-7: Содержимое файла архивного индекса

6.5 Функции поиска

6.5.1 Условия и результаты поиска

Функции поиска осциллографа R&S RTM3000/RTA4004 позволяют находить все фронты, длительности импульсов, пики и другие события в выборке, которые удовлетворяют условиям поиска. Для каждого типа поиска доступны специальные настройки. Поиск может выполняться по каналу, расчетной или опорной осциллограммам - доступные источники зависят от типа поиска.

Конфигурирование поиска

- 1. Нажмите клавишу SEARCH.
- Выберите осциллограмму, по которой необходимо осуществить поиск события: "Источник".
- 3. Выберите тип события, которое следует искать: "Тип поиска".
- 4. Сконфигурируйте условия поиска: "Настройка".

Найденные события и условия поиска показываются в таблице результатов в нижней части экрана. В таблице показаны следующие значения результата: номер, время и дополнительное значение, зависящее от типа поиска (напряжение, длительность).

При выполнении сбора данных результаты поиска в таблице постоянно обновляются, а события маркируются в верхней части диаграммы коричневым контурным треугольником.

Рис. 6-8: Результаты и настройки поиска при выполнении сбора данных

Команды дистанционного управления для получения результатов поиска:

- SEARch:RCOunt? Ha ctp. 438
- SEARch:RESult:ALL? Ha CTP. 437
- SEARch:RESult<n>? Ha CTP. 438
- SEARch:RESDiagram:SHOW Ha ctp. 437
- SEARch:RESult:BCOunt? Ha CTP. 437

Отображение результатов поиска

Просмотр результатов поиска можно осуществлять после остановки сбора данных.

- 1. Остановите сбор данных.
- Коснитесь результата поиска, который нужно проанализировать. При необходимости прокрутите список.

Выбранное событие помечено сплошным треугольником с увеличительным стеклом.

	770 -11		V		2		¥		⊽		⊽	
	552 WY											
	282 nV		R									
												
	232 NV	-										
	182 nV											
	132 nV											TI
							Ť					TL
	82 nV											
	32 nV											
C1	-10 -0						÷.					
	10 10											
	-68 nV											
	-118 nV	-250 µs	-200 µs	-150 µs	-100 µs	-50 µs 🛛 🗸	<u>A</u> :	50 µs	100 µs	150 µs	200 µs	250 µs
\$	Search	×										
Se	arch Event 1	able: C1, Edg	je, Positive									P
	Index			ne								
	1 -300.0020µs											
	2 - 200,002005											
	3 -100 002005											
	4		- 1 . 2									
	- 4		-1.20001	15								
Se	Search Results: 1-4 / 7											

3. В меню "Поиск" выберите пункт "Отслеж. событие".

Выбранное событие перемещается в точку отсчета. Если выбрать другое событие, оно будет показано в той же позиции.

Сохранение результатов поиска

- В верхнем правом углу таблицы результатов поиска коснитесь символа "Сохранить".
- 2. Подключите флэш-накопитель USB, если необходимо сохранить данные вне прибора.
- Выберите правильное место назначения "Назначение" и путь к файлу. Данные также можно сохранить в самом приборе. В этом случае в качестве места назначения "Назначение" выберите каталог "/INT/SEARCH".

- 4. При необходимости измените имя файла и введите комментарий.
- 5. Коснитесь кнопки "Сохранить".

Данные будут сохранены в файле формата CSV.

6.5.2 Общие настройки поиска

Общие настройки поиска не зависят от установленного типа поиска. Они описаны в текущем разделе. Характерные настройки для отдельных типов поиска описаны в следующих разделах.

► Нажмите клавишу SEARCH, чтобы открыть меню "Поиск".

Search	
Search Type	Ċ
Edge	*
Source	Ċ
C1	~
Setup	►
Track Event	
Save	

Поиск

Включение и отключение режима поиска.

Команда дистанционного управления: SEARch: STATe на стр. 423

Тип поиска

Выбор события для поиска.

"Edge"	Похоже на запуск по фронту, результат поиска по фронту фикси- руется, когда осциллограмма пересекает заданный уровень в указанном направлении. Настройки см. в гл. 6.5.3, "Поиск по фронту", на стр. 115.
"Width"	Функция поиска по длительности находит импульсы точно заданной длительности, короче или длиннее заданного времени, или импульсы внутри или снаружи допустимого временного диапазона. Она похожа на функцию запуска по длительности. Настройки см. в гл. 6.5.4, "Поиск по длительности", на стр. 116.
"Peak"	Поиск пиковых значений находит импульсы с амплитудой, превы- шающей заданное значение размаха. Настройки см. в гл. 6.5.5, "Поиск пиковых значений", на стр. 117.

"Rise/Fall time"	Поиск времени нарастания/спада находит перепады с точно заданным временем нарастания/спада, короче или длиннее заданного времени, или время нарастания/спада внутри или сна ружи заданного временного диапазона. Настройки см. в гл. 6.5.6, "Поиск по времени нарастания/спада", на стр. 118.
"Runt"	Поиск ранта находит импульсы с амплитудой ниже нормальной. Кроме того, для ранта можно задать предел по времени. Настройки см. в гл. 6.5.7, "Настройка ранта", на стр. 120.
"Data2Clock"	Поиск по сигналу синхронизации данных, также известный, как установка/удержание, находит нарушения времен установки и удержания. Происходит анализ относительной синхронизации между двумя сигналами: сигналом данных и синхронизирован- ным тактовым сигналом. Настройки см. в гл. 6.5.8, "Поиск по сигналу синхронизации дан- ных", на стр. 121.
"Pattern"	Поиск шаблона находит логические комбинации состояний канала внутри или снаружи заданного временного диапазона. Для каждого канала задаются состояние и пороговый уровень. Состояния логически комбинируются, и время истинного шаблона сравнивается с заданным временным диапазоном. Настройки см. в гл. 6.5.9, "Поиск шаблона", на стр. 123.
"Protocol"	Поиск по протоколу находит различные события в декодированных данных сигналов последовательных шин. События зависят от конкретного протокола и соответствуют настройкам запуска последовательного протокола.
"Window"	Оконный поиск проверяет прохождение сигнала относительно "окна". Окно формируется верхним и нижним уровнями напряже- ния. Условие поиска выполняется, если сигнал входит или поки- дает окно, или если он остается внутри или снаружи в течение более длительного или короткого времени, чем указанное. Настройки см. в гл. 6.5.10, "Оконный поиск", на стр. 125.

Команда дистанционного управления: SEARch:CONDition на стр. 424

Источник

Выбор осциллограммы, по которой проводится поиск. Доступные источники зависят от выбранного типа поиска.

Поиск по фронту, длительности и шаблону можно выполнить по аналоговым и логическим каналам. Поиск пиков, нарастания/спада и ранта может осуществляться по активным аналоговым каналам, расчетным и опорным осциллограммам. Для поиска по синхронизации данных требуется два активных аналоговых канала.

Для поиска по протоколу выберите настроенную шину.

Команда дистанционного управления: SEARch: SOURce на стр. 425

Настройка

Открытие меню для определения параметров поиска для выбранного типа поиска.

Отслеж. событие

Если функция включена, выбранный результат перемещается в точку отсчета. Таким образом, выбранное событие всегда можно видеть на диаграмме.

Сохранить

Открытие диалогового окна для сохранения результатов поиска. Используется формат файлов CSV.

Komaнда дистанционного управления: EXPort:SEARch:NAME на стр. 438 EXPort:SEARch:SAVE на стр. 439

6.5.3 Поиск по фронту

Похоже на запуск по фронту, результат поиска по фронту фиксируется, когда осциллограмма пересекает заданный уровень в указанном направлении.

SEARCH > "Тип поиска" = "Edge" > "Настройка"

Перепад

Установка искомого перепада (фронта): нарастающий, спадающий или оба типа.

Komaндa дистанционного управления: SEARch:TRIGger:EDGE:SLOPe на стр. 425

Уровень

Установка искомого уровня напряжения. Чтобы включить возможность установки уровня, коснитесь функции "Поиск порога".

Komaндa дистанционного управления: SEARch:TRIGger:EDGE:LEVel на стр. 425

Гистерезис

Установка диапазона гистерезиса для искомого уровня с целью избежать нежелательных результатов поиска, вызванных шумовыми осцилляциями вокруг этого уровня. Чтобы включить возможность установки гистерезиса, коснитесь функции "Поиск порога".

Для нарастающего фронта гистерезис лежит ниже уровня поиска. В противоположном случае, для спадающего фронта, гистерезис лежит выше этого уровня.

Команда дистанционного управления: SEARch:TRIGger:EDGE:LEVel:DELTa на стр. 425

Поиск порога

Анализ сигнала, установка уровня на значение 50% от амплитуды сигнала, а также установка гистерезиса.

6.5.4 Поиск по длительности

Функция поиска по длительности находит импульсы точно заданной длительности, короче или длиннее заданного времени, или импульсы внутри или снаружи допустимого временного диапазона. Она похожа на функцию запуска по длительности.

SEARCH > "Тип поиска" = "Width" > "Настройка"

Полярность

Указание полярности искомого импульса.

Komaнда дистанционного управления: SEARch:TRIGger:WIDTh:POLarity на стр. 426

Уровень

Установка уровня напряжения, по которому измеряется длительность импульса. Чтобы включить возможность установки уровня, коснитесь функции "Поиск порога".

Команда дистанционного управления: SEARch:TRIGger:WIDTh:LEVel на стр. 426

Гистерезис

Установка диапазона гистерезиса для искомого уровня с целью избежать нежелательных результатов поиска, вызванных шумовыми осцилляциями вокруг этого уровня. Чтобы включить возможность установки гистерезиса, коснитесь функции "Поиск порога".

Komaндa дистанционного управления: SEARch:TRIGger:WIDTh:LEVel:DELTa на стр. 426

Сравнение

Установка условия сравнения измеренной длительности импульса с заданными пределами.

Функция сравнения работает как функция сравнения при запуске по длительности, см. гл. 5.6, "Запуск по длительности", на стр. 75.

Команда дистанционного управления: SEARch:TRIGger:WIDTh:RANGe на стр. 426

Длит-ть

Установка опорной длительности импульса, номинального значения для сравнения.

Команда дистанционного управления: SEARch:TRIGger:WIDTh:WIDTh на стр. 427

Отклонение

Установка диапазона допуска ∆t относительно опорной длительности "Width", если установлен способ сравнения "Equal" или "Not equal". Будут искаться импульсы внутри или снаружи диапазона длительностей ± ∆t.

Команда дистанционного управления: SEARch:TRIGger:WIDTh:DELTa на стр. 427

6.5.5 Поиск пиковых значений

Функция поиска пиковых значений находит импульсы с амплитудой, превышающей заданное значение размаха (амплитуды).

SEARCH > "Тип поиска" = "Peak" > "Настройка"

Peak	
Polarity	Ç
Positive	~
Magnitude	Ç
	200 mV

Полярность

Указание полярности импульса, для которого ищется пиковое значение.

Команда дистанционного управления: SEARch:MEASure:PEAK:POLarity на стр. 427

Модуль

Установка предельного значения размаха. Если сигнал превышает данный предел, найденное событие заносится в список результатов.

Komaндa дистанционного управления: SEARch:MEASure:LEVel:PEAK:MAGNitude на стр. 428

6.5.6 Поиск по времени нарастания/спада

Поиск времени нарастания/спада находит перепады с точно заданным временем нарастания/спада, короче или длиннее заданного времени, или время нарастания/спада внутри или снаружи допустимого временного диапазона.

► SEARCH > "Тип поиска" = "Rise/Fall Time" > "Настройка"

Фронт

Установка искомого перепада (фронта):

- "Rising" поиск времени нарастания
- "Falling" поиск времени спада

"Both" - поиск времени нарастания и спада

Komaнда дистанционного управления: SEARch:TRIGger:RISetime:SLOPe на стр. 428

Верхний уровень, Нижний уровень

Установка верхнего и нижнего пороговых значений напряжения. Когда сигнал пересекает первый уровень, начинается измерение времени нарастания/спада. Оно останавливается, когда сигнал пересекает второй уровень. Чтобы включить возможность установки уровней, коснитесь функции "Поиск порога".

Команда дистанционного управления:

SEARch:TRIGger:LEVel:RISetime:LOWer Ha ctp. 428 SEARch:TRIGger:LEVel:RISetime:UPPer Ha ctp. 428

Сравнение

Установка способа сравнения измеренного времени нарастания или спада с заданными пределами.

"Greater than"	Нахождение времени нарастания/спада больше заданного вре- мени нарастания/спада "Rise/Fall Time".
"Lower than"	Нахождение времени нарастания/спада меньше заданного вре- мени нарастания/спада "Rise/Fall Time".
"Equal"	Нахождение времени нарастания/спада равного опорному вре- мени нарастания/спада "Rise/Fall Time", если интервал допуска "Отклонение" Δt = 0. Если "Variation" ≠ 0, то ищется время нарастания/спада в диапа- зоне ± Δt.
"Not equal"	Нахождение времени нарастания/спада не равного опорному времени нарастания/спада "Отклонение", если интервал допуска Δt = 0. Если "Отклонение" ≠ 0, то ищется время нарастания/спада за пределами диапазона ± Δt.

Komaндa дистанционного управления: SEARch:TRIGger:RISetime:RANGe на стр. 428

Rise/Fall Time (время нарастания/спада)

Установка опорного времени нарастания или спада, номинального значения для сравнения.

Komaндa дистанционного управления: SEARch:TRIGger:RISetime:TIME на стр. 429

Отклонение

Установка диапазона допуска Δt относительно опорного времени нарастания/ спада "Rise/Fall Time", если установлен способ сравнения "Equal" или "Not equal". Будут искаться значения времени нарастания/спада внутри или снаружи диапазона длительностей ± Δt.

Komaндa дистанционного управления: SEARch:TRIGger:RISetime:DELTa на стр. 429

6.5.7 Настройка ранта

Поиск ранта находит импульсы с амплитудой ниже нормальной. Значение амплитуды импульса дважды пересекает первый порог, не пересекая при этом второй. Кроме пороговых значений амплитуд можно задать временной предел для ранта таким же образом, что и для функции поиска по длительности: ранты с точным значением длительности, короче или длиннее заданного времени, или ранты внутри или снаружи допустимого временного диапазона.

SEARCH > "Тип поиска" = "Runt" > "Настройка"

Полярность

Указание полярности искомого импульса.

Komaндa дистанционного управления: SEARch:TRIGger:RUNT:POLarity на стр. 429

Верхний уровень

Установка верхнего порога напряжения для обнаружения ранта. Отрицательный рант дважды пересекает верхний уровень, не пересекая нижний.

Команда дистанционного управления: SEARch:TRIGger:LEVel:RUNT:UPPer на стр. 430

Нижний уровень

Установка нижнего порога напряжения для обнаружения ранта. Положительный рант дважды пересекает нижний уровень, не пересекая верхний.

Команда дистанционного управления: SEARch:TRIGger:LEVel:RUNT:LOWer на стр. 430

Сравнение

Установка условия сравнения измеренной длительности ранта с заданными пределами.

Функция сравнения работает как функция сравнения при запуске по длительности, см. гл. 5.6, "Запуск по длительности", на стр. 75.

Komaндa дистанционного управления: SEARch:TRIGger:RUNT:RANGe на стр. 430

Длит-ть

Установка опорной длительности ранта, номинального значения для сравнения.

Komaндa дистанционного управления: SEARch:TRIGger:RUNT:WIDTh на стр. 430

Отклонение

Установка диапазона допуска Δt относительно опорной длительности "Длит-ть", если установлен способ сравнения "Equal" или "Not equal". Будут искаться импульсы внутри или снаружи диапазона длительностей ± Δt.

Komaндa дистанционного управления: SEARch:TRIGger:RUNT:DELTa на стр. 431

6.5.8 Поиск по сигналу синхронизации данных

Поиск по сигналу синхронизации данных, также известный, как поиск по времени установки/удержания, находит нарушения времен установки и удержания. Происходит анализ относительной синхронизации между двумя сигналами: сигналом данных и синхронизированным тактовым сигналом.

Многие системы требуют, чтобы сигнал данных не изменял своего значения в течение некоторого времени до и после фронта тактового сигнала. Время установки - это время, в течение которого сигнал данных сохраняет свое значение до фронта тактового импульса. Время удержания - это время, в течение которого сигнал данных сохраняет.

SEARCH > "Тип поиска" = "Data2Clock" > "Настройка"

Настройки поиска по сигналу синхронизации (Data2Clock) содержатся в двух меню. В меню настройки "Setup" задаются полярность тактового сигнала, время установки и удержания; а в меню настройки источника "Source Setup" задается используемый сигнал, уровни и гистерезис для каждого источника.

Функции поиска

clk setup → data X	+ + X
Polarity	Ċ
Positive	•
Setup Time	Ċ
	0 s
Hold Time	Ċ
	53.004 μs

Такт

Выбор входного канала тактового сигнала.

Komaндa дистанционного управления: SEARch:TRIGger:DATatoclock:CSOurce на стр. 431

Данные

Выбор входного канала сигнала данных.

Команда дистанционного управления: SEARch: SOURce на стр. 425

Уровень

Установка уровней напряжений для тактового сигнала и сигнала данных. Момент пересечения уровня и фронт тактового сигнала задают опорную точку для времени установки и времени удержания. Уровень данных задает пороговое значение для изменения данных. Чтобы включить возможность установки уровня, коснитесь функции "Поиск порога".

Команда дистанционного управления:

SEARch:TRIGger:DATatoclock:CLEVel **Ha ctp**. 431 SEARch:TRIGger:DATatoclock:DLEVel **Ha ctp**. 431

Гистерезис

Установка диапазона гистерезиса для искомого уровня выбранного сигнала с целью избежать нежелательных результатов поиска, вызванных шумовыми осцилляциями вокруг этого уровня. Чтобы включить возможность установки гистерезиса, коснитесь функции "Поиск порога".

Команда дистанционного управления:

SEARch:TRIGger:DATatoclock:CLEVel:DELTa Ha CTp. 432 SEARch:TRIGger:DATatoclock:DLEVel:DELTa Ha CTp. 432

Полярность

Установка фронта тактового сигнала для определения временной опорной точки времени установки и удержания.

- "Rising" Учитываются только положительные фронты тактового сигнала.
- "Falling" Учитываются только отрицательные фронты тактового сигнала.
- "Either" Учитываются фронты тактового сигнала, следующие за фронтом сигнала данных, независимо от перепада тактового сигнала. Используйте данную настройку, например, для сигналов с удвоенной частотой передачи данных.

Команда дистанционного управления:

SEARch: TRIGger: DATatoclock: CEDGe Ha CTp. 432

Время установления

Установка минимального времени **перед** фронтом тактового сигнала, в то время как сигнал данных должен сохранять свое значнеие выше или ниже уровня данных.

Команда дистанционного управления: SEARch:TRIGger:DATatoclock:STIMe на стр. 432

Вр удерж

Установка минимального времени **после** фронтом тактового сигнала, в то время как сигнал данных должен сохранять свое значнеие выше или ниже уровня данных.

Komaнда дистанционного управления: SEARch:TRIGger:DATatoclock:HTIMe на стр. 432

6.5.9 Поиск шаблона

Для поиска шаблона в качестве источника могут быть использованы до четырех аналоговых каналов. При установленной опции смешанных сигналов -B1 в шаблон можно также включить цифровые каналы. Для каждого канала задается его состояние. Состояния логически комбинируются, и время истинного шаблона сравнивается с заданным временным диапазоном. Таким образом, можно находить переходы внутри или снаружи данного временного диапазона.

Выберите SEARCH > "Тип поиска" = "Pattern" > "Настройка".

Функции поиска

Threshold (пороговое значение), Гистерезис (гистерезис)

Установка искомого порогового значения для каждого аналогового канала. Если значение сигнала выше порогового, состояние сигнала считается высоким. В противном случае состояние сигнала считается низким.

Для каждого аналогового канала установите гистерезис, чтобы избежать нежелательных результатов поиска из-за шумовых колебаний сигнала.

Команда дистанционного управления:

SEARch:TRIGger:PATTern:LEVel<n> Ha CTP. 433 SEARch:TRIGger:PATTern:LEVel<n>:DELTa Ha CTP. 434

H | L | X, Set All (высокое | низкое | безразличное, все)

Задайте шаблон путем выбора состояния "Н" (высокое), "L" (низкое) или "Х" (безразличное, канал не влияет на поиск) для каждого активного аналогового и цифрового канала.

Длина слова шаблона зависит от количества доступных аналоговых и цифровых каналов. Логические каналы доступны только при установленной опции смешенных сигналов -В1. Используйте значение "Set All" (установить все), чтобы установить все каналы в одинаковое состояние.

Komaнда дистанционного управления: SEARch:TRIGger:PATTern:SOURce на стр. 433

AND, OR, NAND, NOR (И, ИЛИ, И-НЕ, И-ИЛИ)

Установка логической комбинации состояний каналов.

'AND"	Требуемые состояния всех каналов должны появиться во вход-
	ном сигнале одновременно.

"OR" По крайней мере один канал должен иметь требуемое состояние.

- "NAND" Оператор И-НЕ ("Not and"), по крайней мере один канал не имеет требуемого состояния.
- "NOR" Оператор ИЛИ-ИЛИ ("Not or"), ни один из каналов не имеет требуемого состояния.

Команда дистанционного управления:

SEARch: TRIGger: PATTern: FUNCtion Ha CTp. 433

Сравнение

Установка условия сравнения длительности неизменного состояния шаблона с заданным пределом. Три параметра "Длит-ть" "Отклонение" и "Сравнение" задают временной диапазон действия истинного результата шаблона состояний.

Функция сравнения работает как функция сравнения при запуске по длительности, см. гл. 5.6, "Запуск по длительности", на стр. 75.

Komaнда дистанционного управления: SEARch:TRIGger:PATTern:WIDTh:RANGe на стр. 434

Длит-ть

Установка предельного времени неизменного состояния шаблона, номинального значения для сравнения.

Команда дистанционного управления: SEARch:TRIGger:PATTern:WIDTh[:WIDTh] на стр. 434

Отклонение

Установка диапазона допуска Δt относительно опорной длительности "Width", если установлен способ сравнения "Equal" или "Not equal". Будут искаться истинные результаты состояния шаблона внутри или снаружи диапазона длительностей ± Δt.

Команда дистанционного управления: SEARch:TRIGger:PATTern:WIDTh:DELTa на стр. 434

6.5.10 Оконный поиск

Оконный поиск проверяет прохождение сигнала относительно "окна". Окно формируется верхним и нижним уровнями напряжения. Условие поиска выполняется, если сигнал входит или покидает окно, или если он остается внутри или снаружи в течение более длительного или короткого времени, чем указанное.

Window	
Condition	Ċ
Enter	•
Upper Level	Ċ
	600 mV
Lower Level	Ċ
	400 mV
Polarity	Ċ
Either	•

Условие

Выбор способа сравнения прохождения сигнала с оконной функцией.

"Enter"	Поиск сигнала, который пересекает верхний или нижний уровень и таким образом входит в окно, образованное этими двумя уров- нями.
"Exit"	Поиск сигнала, покидающего окно.
"Stay within"	Поиск сигнала, который остается между верхним и нижним уров- нем в течение указанного времени. Время задается различными способами функцией "Сравнение".
"Stay outside"	Поиск сигнала, который остается выше верхнего или ниже ниж- него уровня в течение указанного времени. Время также задается функцией "Сравнение".

Komaнда дистанционного управления: SEARch:TRIGger:WINDow:RANGe на стр. 435

Верхний уровень, Нижний уровень

Установка верхнего и нижнего пороговых значений напряжения. Когда сигнал пересекает первый уровень, начинается оконное измерение. Оно останавливается, когда сигнал пересекает второй уровень. Чтобы включить возможность установки уровней, коснитесь функции "Поиск порога".

Команда дистанционного управления:

SEARch:TRIGger:LEVel:WINDow:LOWer Ha ctp. 435 SEARch:TRIGger:LEVel:WINDow:UPPer Ha ctp. 435

Полярность

Указание полярности искомого импульса.

Команда дистанционного управления: SEARch:TRIGger:WINDow:POLarity на стр. 435

Сравнение

Установка условия сравнения измеренной длительности импульса с заданными пределами.

Функция сравнения работает как функция сравнения при запуске по длительности, см. гл. 5.6, "Запуск по длительности", на стр. 75.

Анализ осциллограмм

Функции поиска

Команда дистанционного управления: SEARch:TRIGger:WINDow:TIMerange на стр. 436

7 Измерения

7.1 Быстрые измерения

Функция быстрых измерений выполняет ряд автоматических измерений в выбранном входном канале. Эти измерения нельзя сконфигурировать. Результаты отображаются непосредственно на осциллограмме (WF) или в нижней строке результатов (L) и непрерывно обновляются.

Если прибор обнаруживает периодичность сигнала, функция быстрых измерений выполняет измерения по первому периоду и отображает их результаты. Если периодичность не обнаружена, измеряется полный сигнал.

• Нажмите клавишу QUICKMEAS для включения режима быстрых измерений.

Табл. 7-1: Результаты быстрых измерений

Метка	Описание	Индикация
Vp+	Положительное пиковое значение	WF
Vp-	Отрицательное пиковое значение	WF
tr	Время нарастания первого нарастающего фронта	WF
tf	Время спада первого спадающего фронта	WF
MeanCyc	Среднее значение	WF
RMS-Cyc	Среднеквадратическое значение (СКЗ)	L
Т	Период	L
f	Частота	L
Vpp	Размах	L

Функция быстрых измерений недоступна для расчетных и опорных осциллограмм. В режиме быстрых измерений каналы, отличные от выбранного, выключаются. Когда активен режим быстрых измерений, курсорные измерения невозможны, но параллельно можно использовать автоматичекие измерения.

 Повторно нажмите клавишу QUICKMEAS, чтобы деактивировать функцию быстрых измерений.

Результаты будут удалены с экрана.

Команды дистанционного управления:

- MEASurement<m>:AON Ha CTP. 450
- MEASurement<m>:AOFF Ha ctp. 450
- MEASurement<m>:ALL[:STATe] Ha CTP. 450
- MEASurement<m>:ARESult? Ha ctp. 450

7.2 Автоматические измерения

Одновременно можно выполнять до 8 различных измерений.

Настройка автоматических измерений в меню Измер.

- 1. Нажмите клавишу MEAS.
- 2. В меню выберите измерительную позицию "Измер. позиция", номер измерения, которое необходимо сконфигурировать.
- Если измерение отключено, включите его с помощью функции "Измерение <n>".
- 4. Выберите тип измерений:
 - а) Коснитесь функции "Тип".
 - b) Выберите вкладку нужной категории измерений.
 - с) Выберите тип измерений:.

Типы измерений описаны в гл. 7.2.2, "Типы измерений", на стр. 131.

5. Выберите пункт "Источник".

В списке выбора показаны все возможные источники. Если осциллограмма неактивна она автоматически активируется при выборе ее в качестве источника измерений.

 Для некоторых типов измерений требуются дополнительные параметры. Прокрутите меню вниз и настройте дополнительные параметры при необходимости.

См. также: гл. 7.2.3, "Настройки автоматических измерений", на стр. 134.

7.2.1 Результаты измерений

Результаты измерений отображаются в строке под масштабной сеткой.

Рис. 7-1: Результаты четырех активных измерений

Если результат не может быть определен, отображается вопросительный знак "?". Отрегулируйте горизонтальные и вертикальные настройки, если прибор не может выполнить измерение.

Если результат измерений лежит за пределами диапазона измерений и возникает ограничение, он отмечается меткой "clipping+" (ограничение сверху) или "clipping-" (ограничение снизу). Отрегулируйте масштаб по вертикали, чтобы получить действительные результаты.

Помимо текущих результатов измерений можно включить статистическую оценку. Она возвращает текущее, минимальное и максимальное значения результатов, среднее и СКО, а также количество измеренных сигналов. Результаты оценивания отображаются на отдельной вкладке под масштабной сеткой.

(1)	-100 mV								
<u></u> /	-150 mV								
	-200 mV								
	-250 mV	-250 µs	-200 µs -150 µ	ıs -100 μs	-50 µs	50 µs	100 µs 150 µs	200 µs 2	250 µs
-	Measure	×	Statistics	×					
		Туре	Current	Minimum	Maximum	Mean	σ-Deviation	Wave count	
1:	C1	f	10.000 kHz	10.000 kHz	10.00 kHz	10.00 kHz	58.35 mHz	1509	
1: 2:	<mark>C1</mark>	f tr	10.000 kHz 11.20 ns	10.000 kHz 11.20 ns	10.00 kHz 11.20 ns	10.00 kHz 11.20 ns	58.35 mHz n/a	1509 1509	
1: 2: 3:	ิ (1) (2)	f tr f	10.000 kHz 11.20 ns 10.05 kHz	10.000 kHz 11.20 ns 10.05 kHz	10.00 kHz 11.20 ns 10.05 kHz	10.00 kHz 11.20 ns 10.05 kHz	58.35 mHz n/a 128.34 mHz	1509 1509 1509	

Рис. 7-2: Статистические результаты четырех активных измерений

Команды дистанционного управления описаны в:

• гл. 17.7.2.2, "Measurements Results", на стр. 455

7.2.2 Типы измерений

Осциллограф R&S RTM3000/RTA4004 поддерживает множество типов измерений временных и амплитудных характеристик, а также функции подсчета импульсов и фронтов.

7.2.2.1 Горизонтальные измерения (Время)

Тип измерения	Символ	Описание	График / формула
Frequency (частота)	f в герцах (Гц)	Частота сигнала, обратная величина первого измерен- ного периода.	f = 1 / T 50%
Period (период)	Т в секун- дах (с)	Длительность первого периода, измеренная на уровне 50%. Для измерения требуется как минимум один пол- ный период сигнала.	50%····
Duty cycle + (коэф. заполнения +)	Dty+ в процен- тах (%)	Длительность первого положительного импульса по отношению к периоду в %. Для измерения требуется как минимум один полный период сигнала.	Dty+ = t+ / T * 100%
Duty cycle - (коэф. заполнения -)	Dty- в процен- тах (%)	Длительность первого отрицательного импульса по отношению к периоду в %. Для измерения требуется как минимум один полный период сигнала.	Dty- = t- / T * 100%
Rise Time (время нарастания)	tr в секун- дах (с)	Время нарастания первого нарастающего фронта - время, которое требуется сигналу для нарастания от 10% до 90% уровня.	90%
Fall Time (время спада)	tf в секун- дах (с)	Время спада первого спадающего фронта - время, кото- рое требуется сигналу для спада от 90% до 10% уровня.	90%
Pulse width + (дли- тельность поло- жительного импульса)	РW+ в секун- дах (с)	Длительность первого положительного импульса: время между нарастающим фронтом и спадающим фронтом, измеренное на уровне 50%.	50%

Измерения

Автоматические измерения

Тип измерения	Символ	Описание	График / формула
Pulse width - (дли- тельность отрица- тельного импульса)	РW- в секун- дах (с)	Длительность первого отрицательного импульса: время между спадающим фронтом и нарастающим фронтом, измеренное на уровне 50%.	50%·····
Delay (задержка)	Dly в секун- дах (с)	Разность по времени между двумя перепадами одного и того же или разных сигналов, измеренная на уровне 50%.	<u>S1</u>
Phase (фаза)	Phs в граду- cax (°)	Разность фаз между двумя сигналами, измеренная на уровне 50%.	Phase = Δt / T * 360° S1 0% Δt S2

7.2.2.2 Вертикальные измерения (Амплитуда)

Единицы измерения большинства результатов амплитудных измерений зависят от измеряемого источника.

Тип измерения	Символ	Описание	График / формула
Amplitude (ампли- туда)	VAmp	Разность между уровнями вершины и основания сиг- нала. Для измерения требуется как минимум один пол- ный период сигнала.	Top Amplitude Base
Top level (уровень вершины)	Vtop	Высокий уровень отображаемой осциллограммы - верх- ний максимум распределения отсчетов или среднее зна- чение высокого уровня меандра без учета выбросов. Для измерения требуется как минимум один полный период сигнала.	Тор
Base level (уро- вень основания)	Vbase	Низкий уровень отображаемой осциллограммы - нижний максимум распределения отсчетов или среднее значе- ние низкого уровня меандра без учета выбросов. Для измерения требуется как минимум один полный период сигнала.	Base
Mean cycle (сред- ний период (цикл))	MeanCyc в вольтах (В)	Среднее значение крайнего левого периода сигнала.	DC N·T

Измерения

R&S®RTM3002, R&S®RTM3004, R&S®RTA4004

Автоматические измерения

Тип измерения	Символ	Описание	График / формула
RMS cycle (СКЗ периода (цикла))	RMS-Сус в вольтах (В)	Среднеквадратическое значение (СКЗ) напряжения крайнего левого периода сигнала.	
Peak to peak (раз- мах)	Vpp	Разность между максимальным и минимальным значе- ниями.	MaxPk-Pk
Peak+ (пик+)	Vp+	Максимальное значение в пределах отображаемой осциллограммы.	Max
Peak- (пик-)	Vp-	Минимальное значение в пределах отображаемой осциллограммы.	Min
Выброс	+Ovr -Ovr в процен- тах (%)	Выброс меандра после нарастания или спада. Он вычисляется по измеренным значениям уровня вер- шины, уровня основания, локального максимума, локального минимума и амплитуды.	$Over + = \frac{Max_{local} - Top}{Amplitude} \cdot 100\%$ $Over - = \frac{Base - Min_{local}}{Amplitude} \cdot 100\%$ $Top + Over + Amplitude$ Base + Over + Over +
Mean (среднее значение)	Mean	Среднее арифметическое значение всей отображаемой осциллограммы.	$Mean = \frac{1}{N} \sum_{k=1}^{N} x_k$
RMS value (сред- неквадратическое значение)	RMS	Среднеквадратическое значение (СКЗ) напряжения всей отображаемой осциллограммы.	$RMS = \sqrt{\frac{1}{N} \sum_{k=1}^{N} x_k^2}$
σ-Std. deviation (среднеквадрати- ческое отклоне- ние, СКО)	σ	Среднеквадратическое отклонение отображаемой осциллограммы.	$\sigma = \sqrt{\frac{1}{N-1}\sum_{k=1}^{N} (x_k - \text{Mean})^2}$

Тип измерения	Символ	Описание	График / формула
σ-Std. dev. cycle (СКО периода (цикла))	σ-Сус	Среднеквадратическое отклонение одного периода (цикла), обычно первого, крайнего левого периода сиг- нала.	σ
Crest factor (коэф- фициент ампли- туды)	Crest	Коэффициент амплитуды или пик-фактор - это отноше- ние пикового к среднему значению амплитуды. Здесь это максимальное значение, деленное на СКЗ отобра- жаемой осциллограммы.	$Crest = \frac{Max x_k }{RMS}$

7.2.2.3 Счетные измерения

Тип измерения	Символ	Описание	График / формула
Positive pulse (положительный импульс)	CntP+	Количество положительных импульсов на экране. Опре- деляется среднее значение сигнала. Если сигнал прохо- дит среднее значение, это учитывается как фронт импульса. Положительный импульс подсчитывается, если обнаружено прохождение нарастающего и спадаю- щего фронтов.	
Negative pulse (отрицательный импульс)	CntP-	Количество отрицательных импульсов на экране. Опре- деляется среднее значение сигнала. Если сигнал прохо- дит среднее значение, это учитывается как фронт импульса. Отрицательный импульс подсчитывается, если обнаружено прохождение спадающего и нарастаю- щего фронтов.	
Positive slope (положительный перепад)	CntS+	Количество нарастающих фронтов на экране. Прибор определяет среднее значение сигнала и подсчитывает фронт при каждом прохождении сигналом среднего зна- чения в указанном направлении.	
Negative slope (отрицательный перепад)	CntS-	Количество спадающих фронтов на экране. Прибор определяет среднее значение сигнала и подсчитывает фронт при каждом прохождении сигналом среднего зна- чения в указанном направлении.	

7.2.3 Настройки автоматических измерений

► Нажмите клавишу MEAS, чтобы открыть меню "Измер.".

Измерения

Автоматические измерения

В меню измерений можно настроить до 8 параллельных измерений (так называемых измерительных позиций). Доступные типы результатов зависят от типа выбранной осциллограммы.

Измер. позиция

Выбор одной из четырех доступных измерительных позиций для настройки и активации.

Измерение <n>

Включение и выключение выбранного измерения.

Команда дистанционного управления: MEASurement<m>[:ENABle] на стр. 451

Тип

Определение типа измерения, которое будет выполняться для выбранного источника. В зависимости от типа измерения в строке результатов отображаются разные результаты.

Выберите вкладку нужной категории измерений, а затем тип измерений. На вкладке "Basic" (основные) содержатся самые распространенные измерения: размах, период, частота, время нарастания, время спада, средний период, и СКЗ периода.

Команда дистанционного управления: MEASurement<m>:MAIN на стр. 451

Источник

Выбор аналогового канала, опорной или расчетной осциллограммы в качестве источника выбранного измерения. Если установлена опция смешанных сигналов -В1, то в качестве источников измерений доступны активные цифровые каналы.

Если осциллограмма неактивна она автоматически активируется при выборе ее в качестве источника измерений.

Команда дистанционного управления: MEASurement<m>:SOURce на стр. 453

Измер. источник, Измер. источник 2

Установка исходных осциллограмм для измерения задержки и фазового сдвига, в которых требуются два источника.

Команда дистанционного управления: MEASurement<m>:SOURce на стр. 453

Настр. задержки для источников Измер. источник и Измер. источник 2

Установка фронтов, используемых для измерения времени задержки. Можно измерить задержку между двумя нарастающими фронтами, двумя спадающими фронтами, между нарастающим и следующим спадающим фронтами и наоборот.

Команда дистанционного управления: MEASurement<m>:DELay:SLOPe на стр. 454

Исп. строб

Включение и выключение измерительного строба. Чтобы установить строб, прокрутите список вниз и выберите функцию Изм. строб.

Команда дистанционного управления: MEASurement<m>:GATE на стр. 417

Статистика

Включение и выключение статистической оценки для выбранного измерения.

Komaндa дистанционного управления: MEASurement<m>:STATistics[:ENABle] на стр. 454

Сброс статистики

Удаление статистических результатов для всех измерений и запуск новой статистической оценки при выполняющемся сборе данных.

Команда дистанционного управления: MEASurement<m>:STATistics:RESet на стр. 455

Удаление всех измерений

Отключение всех активных измерений.

Опорный уровень

Установка нижнего и верхнего опорных уровней для измерения времени нарастания и спада. Также установка среднего опорного уровня, используемого для измерений фазового сдвига и задержки. Уровни задаются в виде процентного отношения к высокому уровню сигнала. Эти настройки действуют для всех измерительных позиций.

Komaндa дистанционного управления: REFLevel:RELative:MODE на стр. 460 REFLevel:RELative:LOWer на стр. 460 REFLevel:RELative:MIDDle на стр. 461 REFLevel:RELative:UPPer на стр. 460

Изм. строб

Measure Gate	
Mode	Ç
Relative	*
Start	Ċ
	25 %
Stop	Ċ
	75 %

Задайте строб для ограничения измерения временным диапазоном. Можно установить начальное "Начало" и конечное "Конец" время в абсолютных или относительных величинах, в зависимости от режима "Режим".

```
Komaндa дистанционного управления:
MEASurement<m>:GATE:MODE на стр. 417
MEASurement<m>:GATE:ABSolute:STARt на стр. 418
MEASurement<m>:GATE:ABSolute:STOP на стр. 418
MEASurement<m>:GATE:RELative:STARt на стр. 418
MEASurement<m>:GATE:RELative:STOP на стр. 418
```

7.3 Курсорные измерения

Курсорные измерения служат для определения результатов в текущих позициях курсоров. Можно вручную установить курсорные линии на фиксированные позиции или привязать их к осциллограмме.

Доступные результаты зависят от типа курсора и типа осциллограммы.

Курсорные измерения

Рис. 7-3: Курсорное измерение с помощью вертикальных и горизонтальных курсоров и привязка к кривой Поместить на кривую

Результаты = под сеткой Линии курсоров 1, 2, 3 = не активны Линия курсора 4 = активная, может перемещаться вращением ручки NAVIGATION

Настройка курсорных измерений

1. Нажмите клавишу CURSOR.

Курсоры активируются с последними установленными настройками.

2. Снова нажмите клавишу CURSOR.

Откроется меню "Курсор".

- 3. Выберите тип курсора "Тип".
- 4. Выберите источник "Источник", осциллограмму, которую требуется измерить.
- 5. Установите дополнительные параметры при необходимости: Отслеживание масштаба, Связь, Поместить на кривую или Поместить на экран.
- Чтобы изменить положение курсорной линии, можно использовать несколько методов:
 - Пальцем перетащить курсорную линию на экране.
 - Нажимать поворотную ручку NAVIGATION до тех пор, пока курсорная линия не станет активной (обозначена сплошной линией).
 Вращать поворотную ручку для перемещения линии.
 - Коснуться соответствующего значения результата в строке результатов внизу экрана.

Откроется клавишная панель и можно будет ввести точное значение.

7.3.1 Настройки курсора

- Открытие меню "Курсор":
 - а) Коснитесь значка 🗇 "Меню" в нижнем правом углу экрана.
 - b) Прокрутите список. Выберите пункт "Курсор".

Курсор

Включение и выключение курсорного измерения.

Komaнда дистанционного управления: CURSor<m>:STATe на стр. 461

Тип

Выбор типа курсора. В зависимости от типа, в строке результатов в нижней части экрана отображаются разные результаты.

Курсорные линии могут быть установлены в нужные позиции с помощью поворотной ручки "Navigation" или путем перетаскивания курсорной линии поэкрану.

"Horizontal"	Установка двух горизонтальных курсорных линий и измерение
	между курсорными линиями. Результаты: V1, V2, ΔV (для текущих измерений: A1, A2, ΔA, для БПФ-измерений: L в дБмВт)
"Vertical"	Установка двух вертикальных курсорных линий и измерение вре- мени от точки запуска до каждой курсорной линии, времени между курсорными линиями и частоты, рассчитанной по этому времени.

Результаты: t1, t2, Δt, 1/Δt (для БПФ-измерений: частоты)

"Vertical &	Комбинация горизонтальных "Horizontal" и вертикальных
Horiz."	"Vertical" курсорных измерений. Устанавливаются две горизо-
	нтальные и две вертикальные курсорные линии. В позициях кур-
	соров измеряются значения напряжений и времени, а также раз-
	ность между этими значениями.
	Результаты: t1, t2, Δt, V1, V2, ΔV
"V-Marker"	Установка двух вертикальных курсоров и измерение значений осциллограммы в точках пересечения курсорных линий и осциллограммы. Также отображаются разности двух значений по осям X и Y.

Результаты: t1, V1, t2, V2, Δt, ΔV

Команда дистанционного управления:

CURSor<m>:FUNCtion Ha CTP. 462

CURSor<m>:TRACking[:STATe] на стр. 463 (V-Marker)

Источник

Определение источника курсорного измерения как одну из активных осциллограмм.

Курсоры можно использовать на аналоговых входных сигналах, расчетных осциллограммах, опорных осциллограммах, ХҮ-диаграмме и БПФ-осциллограмме.

Если установлена опция -B1, вертикальный курсор можно использовать для измерения отдельных логических каналов, а V-маркер - для измерения логических блоков.

Команда дистанционного управления: CURSor<m>:SOURce на стр. 462

Отслеживание масштаба

Если функция включена, курсорные линии соответствующим образом подстраиваются при изменении масштаба по вертикали или по горизонтали. Курсорные линии сохраняют свое положение относительно осциллограммы.

Если функция выключена, курсорные линии сохраняют свои позиции на экране при изменении масштаба.

Komaнда дистанционного управления: CURSor<m>:TRACking:SCALe[:STATe] на стр. 464

Связь

Если функция включена, курсорные линии связаны и перемещаются вместе.

Нажмите клавишу NAVIGATION, чтобы выбрать число перемещаемых курсоров: оба или только один. Если связь выключена, нажатие клавиши NAVIGATION выполняет переключение между отдельными курсорными линиями.

Команда дистанционного управления:

CURSor<m>:XCOupling Ha CTP. 464 CURSor<m>:YCOupling Ha CTP. 464

Поместить на кривую

Автонастройка курсорных линий, установка курсорных линий на характерные точки осциллограммы, в зависимости от выбранного типа курсора. Например, для измерения напряжения ("Horizontal") курсорные линии устанавливаются на верхний и нижний пики осциллограммы. Для временных измерений ("Vertical") курсорные линии устанавливаются на фронты двух последовательных положительных или отрицательных импульсов.

Команда дистанционного управления: CURSor<m>:SWAVe на стр. 464

Поместить на экран

Сброс курсоров на начальные позиции. Сброс полезно проводить, если курсоры исчезли с экрана или их нужно переместить на большое расстояние.

Команда дистанционного управления: CURSor<m>:SSCReen на стр. 464

8 Области применения

8.1 Тестирование по маске

Маски используются для определения соответствия амплитуды сигнала заданным пределам, т.е. для обнаружения ошибок или проверки цифровых сигналов на соответствие требованиям стандарта.

8.1.1 О масках и тестировании по маске

Маски

Маска задается верхней и нижней предельными линиями. Сигнал должен находиться в пределах этих линий, в противном случае будет зафиксировано нарушение пределов маски.

Новая маска создается на базе существующего сигнала Пределы маски создаются путем копирования осциллограммы, ее перемещения и растяжения. В результате вокруг сигнала, используемого в качестве маски, формируется поле допуска.

Маски отображаются на экране тем же цветом, что и опорная осциллограмма.

После задания маски скопированная огибающая сигнала сохраняется в приборе до задания или загрузки другой маски. При необходимости создания более одной маски можно сохранить маску во внутренней памяти и загрузить ее позднее.

Результаты тестирования по маске

Тестирование по маске представляет собой анализ нахождения тестируемого сигнала в пределах маски. Общие результаты тестирования отображаются в окне маски:

левый столбец = абсолютное число и процент выборок данных, прошедших тестирование центральный столбец = абсолютное число и процент выборок данных, не прошедших тестирование правый столбец = число тестируемых выборок данных и длительность тестирования

При тестировании по маске, в случае возникновения нарушений ее пределов, можно инициировать различные действия: звуковое извещение, прекращение сбора данных, сохранение снимка экрана, сохранение данных осциллограммы, передача импульса.

Команды дистанционного управления:

MASK: STATe на стр. 467 для запуска приложения для работы с масками

- MASK:COUNt? Ha ctp. 471
- MASK: VCOunt? Ha ctp. 471

Формат файлов для масок: MSK

MSK - это специальный двоичный формат для масок в приборе R&S RTM3000/ RTA4004. Он содержит пары амплитудных значений (в делениях), их номера отсчетов и текущие настройки прибора. Таким образом, амплитудные значения не привязаны ко времени и напряжению. Данные о маске сохраняются во внутренней памяти и могут быть загружены обратно при необходимости. Данный формат не предназначен для проведения анализа вне прибора R&S RTM3000/ RTA4004.

8.1.2 Использование масок

Запуск приложения для работы с масками

- 1. Нажмите клавишу **Ш** APPS SELECTION.
- 2. Коснитесь функции "Маска".

Также значок маски можно добавить на панель инструментов и запускать приложение из нее. См. "Настройка панели инструментов" на стр. 43.

Создание и настройка маски

Новую маску можно создать на основе канальной осциллограммы, затем её можно оптимизировать путем изменения позиции и пропорций и сохранить в памяти.

- 1. Выберите и настройте осциллограмму канала для использования ее в качестве основы для маски.
- 2. Запустите непрерывный сбор данных.
- 3. Запустите приложение для работы с масками.
- 4. В окне маски коснитесь кнопки "New" (создать).

Области применения

Тестирование по маске

- 5. Настройте размеры маски:
 - Для осуществления простой настройки используйте функции "Size+" и "Size-", чтобы изменить размеры маски по осям X и Y.
 - Для осуществления детальной настройки:
 - Коснитесь кнопки настройки "Setup", чтобы открыть меню маски "Mask".
 - Измените ширину "Width Y", ширину "Width X" и/или растяжение "Stretch Y".

 Чтобы сохранить маску для дальнейшего использования, коснитесь кнопки "Сохранить".

Загрузка маски

1. Нажмите клавишу 🎟 APPS SELECTION.
- 2. Коснитесь функции "Маска".
- 3. Коснитесь функции "Загрузить".
- 4. Выбрать файл маски.
- 5. Коснитесь функции "Загрузить".

Выполнение тестирования по маске

- 1. Настроить осциллограмму, которую необходимо протестировать.
- 2. Создать или загрузить существующую маску. См.:
 - "Создание и настройка маски" на стр. 143
 - "Загрузка маски" на стр. 144
- При необходимости коснитесь кнопки "Setup" и отрегулируйте положение маски по оси Y.
- 4. Установите функцию "Actions" на выполнение при нарушении пределов.
- 5. В окне маски коснитесь кнопки "Run" (выполнить).

При нарушении пределов маски будет выполнено указанное действие. Общие результаты тестирования отображаются в окне маски.

- 6. Коснитесь функции"Reset", чтобы удалить результаты.
- 7. Чтобы закончить тестирование, коснитесь кнопки "Stop".

8.1.3 Окно маски

В окне маски содержатся важнейшие функции для настройки маски и запуска тестирования.

Reset (сброс)

Удаление всех результатов тестирования.

Komaнда дистанционного управления: MASK:RESet:COUNter на стр. 471

Run (пуск), Stop (стоп)

Запуск или завершение тестирования по маске.

Команда дистанционного управления: MASK: TEST на стр. 470

New (создать)

Создание маски по огибающей выбранной канальной осциллограммы.

Команда дистанционного управления: MASK:SOURce на стр. 467 MASK:CHCopy на стр. 467

Size+ (увеличить), Size- (уменьшить)

Увеличение или уменьшение маски по осям Х и Ү.

Save (сохранить), Load (загрузить)

Сохранение созданной маски в файл или загрузка ранее сохраненной маски. Используется формат файлов MSK.

Команда дистанционного управления: MASK: SAVE на стр. 468 MASK: LOAD на стр. 468

Capt. Fails (захват сбоев)

Если данная функция выбрана, в сегментах памяти сохраняются только сбойные выборки.

Функция доступна только при установленной опции архива данных -К15.

Команда дистанционного управления: MASK:CAPTure[:MODE] на стр. 471

Setup (настройка)

Открытие меню настройки "Setup" для указания точных размеров маки и действий, которые выполняются в случае нарушения маски.

8.1.4 Меню Mask (маска)

Открытие меню настройки "Mask":

Области применения

Тестирование по маске

- Коснитесь кнопки "Setup" в окне маски.
- Коснитесь значка "Меню". Выберите пункт "Маска".

Test (тестирование)

Выполнение тестирования по маске выбранного сигнала, т.е. амплитуды сигнала сравниваются с заданной маской. Если амплитуды превышают пределы маски, детектируется нарушение.

Команда дистанционного управления: MASK: TEST на стр. 470

Copy Channel (копировать канал)

Создание новой маски из огибающей осциллограммы выбранного канала и сохранение ее в приборе.

Команда дистанционного управления: MASK:SOURce на стр. 467 MASK:CHCopy на стр. 467

Y-Position (положение по Y)

Перемещение маски на экране по вертикали. Текущее положение задается в делениях.

Команда дистанционного управления: MASK: YPOSition на стр. 467

Stretch Y (растяжение по Y)

Изменение вертикального масштаба для растяжения или сжатия маски по оси Ү.

Команда дистанционного управления: MASK: YSCale на стр. 468

Width X (ширина по X)

Изменение ширины маски по горизонтали. Заданный в делениях коэффициент складывается с положительными значениями по оси X и вычитается из отрицательных значений по оси X пределов маски относительно центра маски. Таким образом, левая половина маски сдвигается влево, а правая сдвигается вправо.

Команда дистанционного управления: MASK: XWIDth на стр. 468

Width Y (ширина по Y)

Изменение ширины маски по вертикали. Указанное количество делений складывается со значениями по оси Y верхнего предела маски и вычитается из значений по оси Y нижнего предела маски. Таким образом, верхняя половина маски поднимается вверх, а нижняя опускается вниз, общая высота маски становится равной удвоенной ширине "Width Y".

Команда дистанционного управления: MASK: YWIDth на стр. 468

Save (сохранить)

Сохранение маски в специальном формате прибора (MSK). Сохраняется полное определение маски: огибающая осциллограммы с параметрами ширины, растяжения и положения.

Команда дистанционного управления: MASK: SAVE на стр. 468 и команды описаны в гл. 17.9.1.5, "Masks", на стр. 491.

Load Mask (загрузить маску)

Открытие диспетчера файлов для выбора предварительно сохраненных масок. Выбранная маска загружается и используется для последующего тестирования.

Команда дистанционного управления: MASK: LOAD на стр. 468

Actions (действия)

Открытие подменю для выбора действия, запускаемого при возникновении нарушения пределов маски.

"Sound"	Воспроизведение звукового сигнала при каждом нарушении.
"Stop"	Остановка сбора данных. Установка числа нарушений для оста- новки. В результате, можно проигнорировать указанное число нарушений, прежде чем сбор данных будет остановлен.
"Pulse"	Формирование импульса на разъеме AUX OUT. Выбор данной настройки устанавливает для разъема AUX OUT конфигурацию "Нарушение маски".
"Screenshot"	Сохранение снимка экрана в соответствии с настройками в меню "Файл" > "Снимки экрана".

Области применения

БПФ-анализ

"Save Сохранение данных осциллограммы в соответствии с настрой-Waveform" ками в меню "Файл" > "Осцилл-мы".

Команда дистанционного управления:

MASK: ACTion: SOUNd: EVENt: MODE Ha ctp. 469 MASK: ACTion: STOP: EVENt: MODE Ha ctp. 469 MASK: ACTion: STOP: EVENt: COUNt Ha ctp. 469 MASK: ACTion: PULSe: EVENt: MODE Ha ctp. 469 MASK: ACTion: SCRSave: EVENt: MODE Ha ctp. 469 MASK: ACTion: WFMSave: EVENt: MODE Ha ctp. 469

Capture Segments (захватить сегменты)

Выбор сохраняемых в сегментах выборок: все выборки или только сбойные. Для анализа сегментов можно использовать функцию архива.

Функция доступна только при установленной опции архива данных -К15.

Команда дистанционного управления: MASK:CAPTure[:MODE] на стр. 471

8.2 БПФ-анализ

В приборе R&S RTM3000/RTA4004 имеется базовая функция БПФ-анализа, входящая в состав встроенного ПО.

Чтобы включить функцию БПФ-анализа, нажмите клавишу FFT.

Сокращенное меню для БПФ-анализа

Для выбора типа осциллограмм, отображаемых на БПФ-диаграмме можно использовать сокращенное меню БПФ. Также имеется возможность установки полной полосы обзора и отключения функции БПФ-анализа.

 Чтобы открыть сокращенное меню для БПФ, коснитесь ярлыка БПФ в нижней строке экрана. Ярлык доступен только при включенной функции БПФ-анализа.

БПФ-анализ

8.2.1 Отображение БПФ на экране

При активации отображения БПФ на экране появятся два окна: верхнее – зависимость сигнала от времени, нижнее – результат БПФ-анализа. Кроме того, отдельные параметры БПФ могут быть заданы с помощью функций быстрого доступа.

- 1 = Включение функции БПФ
- 2 = Отображение зависимости сигнала от времени
- 3 = Функции быстрого доступа к параметрам БПФ
- 4 = Результат БПФ-анализа
- 5 = Начальная частота
- 6 = Конечная частота
- 7 = Центральная частота
- 8 = Полоса обзора

БПФ-анализ

- 9 = Полоса разрешения
- 10 = Канал для входных данных
- 11 = Открытие сокращенного меню БПФ
- 12 = Масштаб амплитуды по вертикали (диапазон на деление)

Источник данных

БПФ-анализ выполняется по данным, захваченным в одном из активных входных каналов, или по одной из активных расчетной или опорной осциллограмм. Анализ может выполняться только по одному каналу за раз.

Масштаб временной оси

БПФ-анализ выполняется по прореженным данным, захваченным во время всего цикла сбора данных. Чтобы ограничить масштаб по времени, для которого выполняется БПФ-анализ (уменьшая тем самым время вычислений), необходимо увеличить полосу разрешения (см. "Полоса разрешения" на стр. 156).

Диапазон частот

Отображение может быть ограничено результатами для указанного диапазона частот.

Вертикальное положение и размер БПФ-осциллограммы

Чтобы установить положение и масштаб, выберите спектр и используйте поворотные ручки для вертикальных настроек SCALE и OFFSET / POSITION (UPPER KNOB).

Команды дистанционного управления:

- SPECtrum: FREQuency: SCALe Ha CTP. 474
- SPECtrum: FREQuency: POSition Ha CTP. 474

8.2.2 Выполнение БПФ-анализа

- 1. Чтобы автоматически отрегулировать настройки прибора под текущий входной сигнал, нажмите AUTOSET.
- 2. Дважды нажмите клавишу FFT, чтобы открыть меню БПФ (FFT).
- Выберите тип окна "Окно БПФ" в соответствии с характеристиками сигнала, которые наиболее важны для текущей измерительной задачи (см. "Окно БПФ" на стр. 153).
- В меню "Осцилл-ма" включите осциллограммы для отображения (см. "Осцилл-ма" на стр. 154).
 Из каждого типа осциллограммы также можно создать опорную осциллограмму для дальнейшего анализа.

- 5. С помощью функций быстрого доступа к параметрам БПФ установите начальную частоту "Начало", конечную частоту "Конец", полосу обзора "Полоса обзора" и полосу разрешения "Полоса разрешения".
- 6. Чтобы запустить и остановить БПФ-анализ, нажмите клавишу RUN STOP.

8.2.3 Настройка БПФ

Параметры для БПФ-анализа можно установить в меню FFT (БПФ) и с помощью функций быстрого доступа.

 Чтобы открыть меню, нажмите клавишу FFT.
 Если функция БПФ-анализа не включена, выполните два касания: первое, чтобы активировать БПФ, и второе, чтобы открыть меню БПФ.

```
Откроется меню FFT (БПФ) и на экране отобразятся функции быстрого доступа к параметрам.
```

FFT			
Source		Ç	
C1		*	
FFT Wi	FFT Window		
Flat To	Flat Top		
Vertica	l Scale		
dBm	dBV	Veff	
duuu Waveform ►			

Функции быстрого доступа к параметрам БПФ

- 3 = Центральная частота
- 4 = Полоса обзора
- 5 = Полоса разрешения (RBW)
- 6 = Ширина участка временной оси
- 7 = Положение участка временной оси

Источник

Выбор канала, для которого будет проводиться БПФ-анализ захваченных данных. Можно выбрать один из активных входных каналов, расчетную или опорную осциллограмму.

Команда дистанционного управления: SPECtrum: SOURce на стр. 472

Окно БПФ

Использование оконной функции помогает минимизировать разрывы в конце измеренного интервала сигнала и, тем самым, уменьшить влияние эффекта утечки спектра, увеличив разрешение по частоте.

В приборе R&S RTM3000/RTA4004 содержатся различные оконные функции, которые подходят для различных входных сигналов. Каждая из оконных функций имеет определенные характеристики, обладая некоторыми преимуществами и некоторыми недостатками. Внимательно изучите эти характеристики, чтобы подобрать оптимальное решение для измерительной задачи.

- "Хэннинга" Окно Хэннинга является колоколообразным. В отличие от окна Хэмминга, значения на границах измерительного интервала равны нулю. Таким образом, снижается уровень шума внутри спектра и ширина спектральных линий увеличивается. Данное окно используется для точного измерения амплитуд периодических сигналов.
- "Хэмминга" Окно Хэмминга является колоколообразным. Его значения на границах измерительного интервала не равны нулю. Таким образом, уровень шума внутри спектра выше, чем для окон Хэннинга или Блэкмана, но меньше, чем для прямоугольного окна. Ширина спектральных линий меньше, чем для других колоколообразных функций.

Данное окно используется для точного измерения амплитуд периодических сигналов.

"Блэкмана" Окно Блэкмана является колоколообразным и имеет наиболее резкий спад из всех доступных функций. Его значения на равны нулю на обеих границах измерительного интервала. Амплитуды при использовании окна Блэкмана могут быть измерены с очень высокой точностью. Однако определение частоты выполняется гораздо сложнее.

Данное окно используется для измерения одночастотных сигналов с целью обнаружения гармоник и точных измерений однотональных сигналов.

- "С плоской
 Окно с плоской вершиной обеспечивает малую погрешность вершиной"
 Измерения амплитуды, но имеет слабое разрешение по частоте. Данное окно используется для проведения точных измерений однотональных сигналов и амплитуд гармонических составляющих.
- "Прямоугольное" Прямоугольное окно умножает все точки на единицу. Результат обеспечивает высокую точность определения частот за счет тонких спектральных линий, но при этом возрастает уровень шума. Данная оконная функция используется для измерений с разделением двух тональных сигналов с практически одинаковыми амплитудами и очень близкими по частоте.

Команда дистанционного управления: SPECtrum:FREQuency:WINDow:TYPE на стр. 472

Масштаб по вертикали

Определение единиц масштаба для вертикальной шкалы.

Отображенные значения действительны для сопротивления нагрузки 50 Ом. Параллельно с высоким входным сопротивлением можно использовать внешний согласующий резистор.

- "dBm" Логарифмический масштаб; относительно 1 мВт
- "dBV" Логарифмический масштаб; относительно 1 В (эфф.)
- "Veff" Линейный масштаб; отображение среднеквадратического значения напряжения.

Команда дистанционного управления:

SPECtrum:FREQuency:MAGNitude:SCALe Ha ctp. 473

Осцилл-ма

Определение отображаемых захваченных данных. Одновременно может быть отображено несколько типов осциллограмм, но хотя бы одна осциллограмма должна быть выбрана. По умолчанию выбрана осциллограмма спектра "Спектр". Из каждого типа осциллограммы также можно создать опорную осциллограмму для дальнейшего анализа.

При выборе нового режима перезапускается вычисление статистической оценки.

Чтобы очистить результаты предыдущих измерений, использованных для статистической оценки, выберите функцию сброса "Сброс".

"Спектр"

Отображается текущее измеренное значение для каждой частоты.

"Удержание Отображается минимальное значение для каждой частоты по мин" всем измерениям.

Использование режима удержания минимума является хорошим способом выделения сигналов на фоне шума или подавления прерывистых сигналов.

"Удержание	Отображается максимальное значение для каждой частоты по
макс"	всем измерениям.
	Использование режима удержания максимума является хорошим способом обнаружения прерывистых сигналов или максималь- ных значений флуктуирующих сигналов.
"Усреднение"	Вычисляется среднее значение для каждой частоты в сигнале по указанному количеству усреднений "# усреднений".
	Усреднение уменьшает влияние шума, но не влияет на синусои-
	дальные сигналы. Поэтому использование усреднения кривой
	является хорошим способом обнаружения сигналов вблизи
	уровня шума.

Команда дистанционного управления:

SPECtrum:WAVeform:SPECtrum[:ENABle] Ha CTP. 477 SPECtrum:WAVeform:MINimum[:ENABle] Ha CTP. 477 SPECtrum:WAVeform:MAXimum[:ENABle] Ha CTP. 477 SPECtrum:WAVeform:AVERage[:ENABle] Ha CTP. 477 SPECtrum:FREQuency:AVERage:COUNt Ha CTP. 474

Сброс

Удаление результатов предыдущих измерений, используемых при статистической оценке, см. Осцилл-ма.

Команда дистанционного управления: SPECtrum: FREQuency: RESet на стр. 474

Начало

Определение начальной частоты отображаемой полосы обзора частот.

Команда дистанционного управления: SPECtrum: FREQuency: STARt на стр. 475

Конец

Определение конечной частоты отображаемой полосы обзора частот.

Команда дистанционного управления: SPECtrum: FREQuency: STOP на стр. 475

Центр

Определение центральной частоты отображаемой полосы обзора.

Для установки центральной частоты также можно использовать клавиши Position.

Команда дистанционного управления: SPECtrum: FREQuency: CENTer на стр. 474

Полоса обзора

Полоса обзора указывается в герцах и задает ширину отображаемого диапазона частот, от (Center - Span/2) до (Center + Span/2). Положение полосы обзора задается с помощью настройки Центр.

Команда дистанционного управления: SPECtrum: FREQuency: SPAN на стр. 475

Полоса разрешения

Полоса разрешения (RBW) определяет разрешение спектра, а именно: минимальное расстояние между двумя различимыми пиками. Чем выше разрешение (чем меньше отношение), тем больше пиков обнаруживается, но тем больше времени требуется на завершение измерения.

Команда дистанционного управления:

```
SPECtrum: FREQuency: BANDwidth [:RESolution] [:VALue] Ha CTP. 475
SPECtrum: FREQuency: BANDwidth [:RESolution]:RATio Ha CTP. 475
SPECtrum: FREQuency: BANDwidth [:RESolution]:AUTO Ha CTP. 476
```

Ρ

Установка положения участка временной оси.

Команда дистанционного управления: SPECtrum:TIME:POSition на стр. 476

W

Установка ширины участка временной оси, для которого вычисляется БПФ. Команда дистанционного управления: SPECtrum: TIME: RANGe на стр. 476

8.3 XY-диаграмма

XY-диаграммы объединяют уровни напряжений двух сигналов на одной диаграмме. При этом уровень напряжения второго сигнала используется по оси X вместо временной развертки. Это дает возможность, например, производить измерения фазовых сдвигов. При использовании гармонически связанных сигналов результирующие XY-диаграммы будут представлять собой фигуры Лиссажу. XY-диаграммы также могут быть использованы для отображения квадратурного (IQ) представления сигнала.

Вместе с ХҮ-диаграммой в отдельных масштабных сетках отображаются временные диаграммы исходных сигналов. Также имеется возможность задать для сравнения два исходных сигнала по оси Ү.

- 1. Нажмите клавишу III APPS SELECTION.
- 2. Выберите пункт "ХҮ".
- Убедитесь, что сигналы, функция запуска и режим сбора данных корректно настроены. Необходимые меню доступны в режиме XY.

Команда дистанционного управления: DISPlay: MODE на стр. 479

ХҮ-диаграмма

Для анализа сигналов на ХҮ-диаграмме можно использовать курсорные измерения. Можно выбрать конкретный тип курсорных измерений: "Voltage X", "Voltage Y1", "Voltage Y2" используют 2 курсорные линии, "Voltage X-Y1" и "Voltage X-Y2" используют 4 курсорные линии.

Источник Х

Определение источника, который будет отображаться по оси X на XY-диаграмме, заменяя обычную ось времени. Источником может быть любой из аналоговых каналов.

Команда дистанционного управления: DISPlay:XY:XSOurce на стр. 479

Источник Ү1

Определение первого сигнала, который будет отображаться по оси Y на XY-диаграмме. Источником может быть любой из активных аналоговых каналов.

Команда дистанционного управления: DISPlay:XY:Y1Source на стр. 480

Источник Ү2

Определение необязательного второго источника, который будет отображаться по оси Y на XY-диаграмме. Источником может быть любой из аналоговых каналов. Настройка действительная только для 4-канальных приборов R&S RTM3000/ RTA4004.

Команда дистанционного управления: DISPlay:XY:Y2Source на стр. 480

8.4 Цифровой вольтметр

Интегрированный трехразрядный цифровой вольтметр (ЦВМ, DVМ) упрощает проведение измерений, в частности, для обслуживающего персонала. Можно одновременно измерить до четырех параметров с различных источников и задать положение окна с результатами измерений.

Доступны следующие виды измерений ЦВМ:

- DC: среднее значение сигнала
- AC+DC RMS: СКЗ сигнала
- AC RMS: СКЗ переменной составляющей сигнала

Цифровой вольтметр захватывает входные данные с выбранной чувствительностью по вертикали и базовой точностью АЦП. Он не зависит от настроек захвата и постобработки. Все измерения базируются на измерительном интервале, который обеспечивает получение надежных результатов в заданном диапазоне частот.

Meter	×
DC	>8 <u>5</u> 4 <u>A</u>
AC RMS	88.9 mv
AC RMS	🔒 μν
AC+DC	SOO _{µv}

Рис. 8-1: Результаты 4 измерений вольтметром. Источник измерений обозначается цветом канала. Источником измерения 1 является канал 1, он ограничен по амплитуде.

Команды дистанционного управления для считывания результатов измерения:

- DVM<m>:RESult[:ACTual]? Ha CTp. 481
- DVM<m>:RESult[:ACTual]:STATus? Ha CTP. 481

8.4.1 Использование ЦВМ

Активация измерений ЦВМ

- Используйте один из следующих способов:
 - Коснитесь значка "Изм." на панели инструментов.

1	1	Ē	∧,∕ Nx	Ø	يستل		⊡
Undo	Redo	Delete	Nx Single	Meter	FFT	Annotation	Demo

 Нажмите клавишу Ш APPS SELECTION. Коснитесь функции "Изм.".

Scope	QuickMeas	FFT	Mask	XY
Demo	1.999 Neter	123 Trigger Counter	Probe Adjust	
Function Gen.	Pattern Gen.			

Деактивация измерений ЦВМ

- Используйте один из следующих способов:
 - Снова коснитесь значка "Изм." на панели инструментов.
 - Закройте окно результатов "Изм.".

8.4.2 Настройки ЦВМ

 Чтобы открыть меню конфигурации "Изм.", коснитесь области внутри окна результатов "Изм.".

Изм. (вкл/выкл)

Включение или отключение цифрового вольтметра с последней конфигурацией. Функция предустановки очищает конфигурацию вольтметра.

Команда дистанционного управления: DVM<m>:ENABle на стр. 480

Изм.

Выбор одно из четырех доступных измерений ЦВМ. Конфигурация выбранного ЦВМ отображается в меню.

Источник

Выбор аналогового канала в качестве источника выбранного измерения ЦВМ.

Команда дистанционного управления: DVM<m>:SOURce на стр. 481

Тип

Определение типа измерения, которое будет выполняться для выбранного источника:

- DC: среднее значение сигнала
- AC+DC RMS: СКЗ сигнала
- AC RMS: СКЗ переменной составляющей сигнала

Выберите функцию выключения "Off", чтобы отключить выбранное измерение ЦВМ.

Команда дистанционного управления: DVM<m>: TYPE на стр. 481

8.5 Частотомер запуска

Частотомер показывает два основных параметра источника запуска: частоту и период.

- 1. Нажмите клавишу 🎟 APPS SELECTION.
- 2. Коснитесь функции "Частотомер запуска".

Области применения

Частотомер запуска

По умолчанию в окне результатов отображаются частота и период источника запуска.

- 1. Для переключения между результатами измерения частоты и периода, выполните касание внутри окна.
- 2. Для отображения результатов активных осциллограмм, коснитесь значка источника ("Trg") и выберите осциллограмму.
- Для перемещения окна результатов в удобное положение можно перетаскивать окно по экрану.

Команды дистанционного управления:

- TCOunter: ENABle Ha CTP. 482
- TCOunter: SOURce Ha CTP. 482
- TCOunter:RESult[:ACTual]:FREQuency? Ha CTP. 483
- TCOunter:RESult[:ACTual]:PERiod? Ha CTP. 483

9 Документирование результатов

Осциллограф R&S RTM3000/RTA4004 способен сохранять различные данные в файлы с целью их дальнейшего использования, анализа и протоколирования:

- Настройки прибора: гл. 9.1, "Сохранение и загрузка настроек прибора", на стр. 163
- Осциллограммы: гл. 9.2, "Экспорт осциллограмм", на стр. 165
- Снимки экрана: гл. 9.4, "Снимки экрана", на стр. 170
- Опорные осциллограммы
 - гл. 6.3, "Опорные осциллограммы", на стр. 95
 - Экспорт и импорт: гл. 9.6, "Экспорт и импорт", на стр. 173
- Результаты поиска, таблица шины с результатами декодирования, статистические данные: гл. 9.5, "Быстрое сохранение с помощью функции OneTouch", на стр. 172

Также имеется возможность комбинации этих данных и сохранения их в сжатом файле с помощью клавиши 🖾, см. гл. 9.5, "Быстрое сохранение с помощью функции OneTouch", на стр. 172

Для сохранения и загрузки данных нажмите клавишу SAVE LOAD.

File	
Setup	▶
References	►
Waveforms	
Screenshots	
Formularies	►
OneTouch	
G one touch	

Места хранения данных

Данные осциллограмм, снимки экранов и результаты, которые предназначены для анализа вне осциллографа, всегда сохраняются на флэш-накопитель USB. Флэш-накопитель USB является внешним местом хранения (USB_FRONT). Это место хранения доступно только при подключенном флэш-накопителе USB. Опорные осциллограммы и настройки прибора, которые предназначены для дальнейшего использования в приборе, обычно сохраняются на внутреннем устройстве хранения (/INT). Их также можно сохранить на внешнем устройстве хранения или переместить их в другое место с помощью функции экспорта/ импорта.

Во всех местах хранения поддерживается файловая система FAT.

9.1 Сохранение и загрузка настроек прибора

Чтобы повторять измерения или испытания в разное время или выполнять аналогичные измерения с различными тестовыми данными, можно сохранить используемые настройки конфигурации. Более того, при анализе результатов может быть полезно обратиться к настройкам конфигурации конкретного измерения. Поэтому обеспечивается удобная возможность сохранения полной конфигурации измерений, включая настройки отображения. Настройки сохраняются вместе с маленьким снимком экрана для лучшей идентификации файлов настроек.

По умолчанию настройки прибора сохраняются во внутреннем устройстве хранения /INT/SETTINGS, но их также можно сохранить на флэш-носитель USB.

При частом сохранении и загрузки настроек прибора попробуйте следующие функции быстрого вызова:

- Панель инструментов "Save Setup" служит для сохранения текущих настроек в файл в соответствии с настройками в меню "Файл" > "Настройка". Значок "Load Setup" открывает диалоговое окно выбора и загрузки настроек. См. также "Настройка панели инструментов" на стр. 43.
- Сконфигурируйте функцию OneTouch на сохранение настроек прибора. См. гл. 9.5, "Быстрое сохранение с помощью функции OneTouch", на стр. 172.

Сохранение, загрузка, сброс, экспорт и импорт настроек прибора

- 1. Нажмите клавишу SAVE LOAD.
- 2. Выберите пункт "Настройка"
- 3. Выберите необходимую функцию.

Сохранение и загрузка настроек прибора

Сохранить

Откройте диалоговое окно для сохранения текущих настроек прибора в файл.

Для изменения места хранения данных выберите параметр "Назначение" > "Размещение".

Измените имя файла, если автонаименование не подходит. Расширение файла SET устанавливается автоматически. Можно ввести необязательный комментарий, описывающий настройки.

Коснитесь кнопки "Сохранить" для запуска процесса записи данных.

Команда дистанционного управления: MMEMory:STORe:STATe на стр. 504

Загрузить

Открытие диспетчера файлов для выбора файла настроек прибора, которые следует загрузить в прибор.

Для изменения места хранения данных выберите параметр "Назначение" > "Размещение".

Коснитесь кнопки "Загрузить" для изменения настроек.

Команда дистанционного управления: MMEMory:LOAD:STATe на стр. 504

Импорт Экспорт

Открытие меню для копирования данных между внутренним устройством хранения данных прибора "/INT/SETTINGS" и флэш-накопителем USB.

Убедитесь, что флэш-накопитель USB подключен.

Описание процедуры см. в гл. 9.6, "Экспорт и импорт", на стр. 173.

Память исп.

Индикация свободного объема памяти (абсолютное и относительное значения) на внутреннем устройстве хранения данных прибора "/INT" и используемого на каждый подкаталог объема (в килобайтах).

Если обнаружен флэш-накопитель USB, также отображается свободный объем памяти данного устройства.

Заводские настройки

Сброс прибора на заводские настройки. Команда дистанционного управления: SYSTem: PRESet

9.2 Экспорт осциллограмм

Данные осциллограмм всегда сохраняются на флэш-накопитель USB. Функция экспорта осциллограмм обеспечивает следующие возможности:

- Сохранение одной осциллограммы или всех активных осциллограмм.
- Опция -К15: сохранение архивных данных.
- Опция -В1: сохранение логических каналов.

Сохранение осциллограмм:

- 1. Активируйте осциллограммы, которые необходимо экспортировать.
- 2. Нажмите клавишу SAVE LOAD.
- 3. Выберите пункт "Осцилл-мы".
- 4. Задайте настройки в диалоговом окне.
- 5. Коснитесь кнопки "Сохранить".

9.2.1 Настройки экспорта осциллограмм

Save - Waveforms					?	×
Destination						
/USB_FRONT						
File Name				Au	to	Name
HIST_A01						X
Format		Source		Points		
CSV	*	C1	*	Display Data		*
Samples: 120 000 File size (approx.): 2 813 kl Time required (approx.): < Sample number may be re	B < 1 m educ	in ed due to running acquisit	tion.			
Save				Close		

Назначение

Место назначения /USB_FRONT активно только при подключенном к порту USB на передней панели флэш-накопителю USB.

Коснитесь поля и выберите целевой каталог. Коснитесь кнопки "Принять кат." для подтверждения выбора.

Экспорт осциллограмм

Команда дистанционного управления: EXPort:WAVeform:NAME на стр. 495

Имя файла

Указание имени сохраняемого файла. Стандартное имя TRACE01 или с более высоким номером, что зависит от существующих файлов в целевом каталоге.

Команда дистанционного управления: EXPort:WAVeform:NAME на стр. 495

Формат

Выбор формата файла.

- "BIN MSB": Двоичные данные, первый старший байт
- "BIN LSB": Двоичные данные, первый младший байт
- "FLT MSB": Формат с плавающей запятой, первый старший байт
- "FLT LSB": Формат с плавающей запятой, первый младший байт
- "CSV": Значения, разделенные запятой (= формат по умолчанию)
- "ТХТ": Текстовый формат файла

Чтобы загрузить данные осциллограммы в качестве опорной осциллограммы, их необходимо сохранить в формате TRF или CSV.

Описание форматов файлов см. в гл. 9.2.2, "Форматы файлов осциллограмм", на стр. 167.

Источник

Выбор сохраняемых каналов: либо один активный канал, либо все активные каналы вместе.

Команда дистанционного управления: EXPort:WAVeform:SOURce на стр. 495

Точки

Выбор количества точек данных, сохраняемых в файле осциллограммы.

- "Display Data": Сохранение всех отображаемых в данный момент отсчетов осциллограммы.
- "Acq. Memory": Сохранение всех отсчетов, хранящихся в памяти собранных данных. Данная настройка действует только для остановленного сбора данных. Для выполняющегося сбора данных могут быть сохранены только отображаемые данные.
- "History Data": Сохранение данных осциллограммы из сегментов архива. См. также гл. 6.4.5, "Экспорт архивных данных", на стр. 107.

Команда дистанционного управления: CHANnel<m>:DATA:POINts на стр. 486

Сохранить

Сохранение данных в выбранном каталоге устройства хранения. Когда сохранение завершено, на экране отображается использованный путь и имя файла.

Сохранение невозможно, если для параметра "Точки" установлено значение "Acq. Memory" или "History Data" и выполняется сбор данных.

Команда дистанционного управления: EXPort:WAVeform:SAVE на стр. 495

9.2.2 Форматы файлов осциллограмм

Данные всех осциллограмм сохраняются в виде последовательности значений или пар значений. Пары значений записываются как два последовательных одиночных значения. В зависимости от формата файла, сохраняются либо только амплитудные значения, либо амплитудные значения вместе с временными (или частотными в режиме БПФ).

С помощью функций экспорта/импорта можно изменять целевой формат файла и конвертировать данные.

Чтобы загрузить данные осциллограммы в качестве опорной осциллограммы, их необходимо сохранить в формате TRF или CSV.

9.2.2.1 Формат CSV

В текстовом файле, содержащем значения разделенные запятыми (Comma Separated Values), осциллограмма хранится в виде таблицы из двух столбцов. Столбцы разделяются запятыми, а строки – разрывами строк \r\n (0x0D 0x0A). Значения записаны в экспоненциальном формате.

Первый столбец содержит временные значения отсчетов относительно момента запуска, а второй содержит соответствующие им амплитудные значения. В первой строке указываются единицы измерения каждого столбца и название осциллограммы. Пары значений записаны как два одиночных значения с одним временным значением (минимальное и максимальное).

Данные могут быть обратно загружены в прибор для дальнейшего использования.

Пример CSV1: Осциллограмма канала 1, одиночные значения

```
in s,CH1 in V
-1.1996E-02,1.000E-02
-1.1992E-02,1.000E-02
-1.1988E-02,1.000E-02
-1.1984E-02,1.000E-02
```

Пример CSV2: Осциллограмма канала 1, пары значений

```
in s,CH1 in V
-2.9980E+00,2.000E-05
-2.9980E+00,1.400E-04
-2.9960E+00,-1.800E-04
-2.9960E+00,1.400E-04
-2.9940E+00,-1.800E-04
-2.9940E+00,1.400E-04
```

Пример CSV3: БПФ

in Hz,FFT in dBm
0.000000E+00,1.03746E+01
1.525879E+02,7.49460E+00
3.051758E+02,-1.19854E+01
4.577637E+02,-1.56854E+01

Импорт файлов CSV: Если CSV-файл импортируется в прибор в качестве опорной осциллограммы с флэш-накопителя USB, функция импорта конвертирует данные в формат TRF. Прибор считывает первое и последнее временное значение и вычисляет общую длительность осциллограммы и количество значений. Затем все амплитудные значения считываются одно-за-одним и записываются с эквидистантным временным распределением в TRF-файл. Если первые два временных значения одинаковы, то считается, что осциллограмма состоит из пар значений.

9.2.2.2 Формат ТХТ

Файлы ТХТ – это ASCII-файлы, которые содержат только амплитудные значения в экспоненциальном формате и не содержат временных значений. Амплитудные значения разделяются запятыми. Пары значений перечисляются в виде двух последовательных одиночных значений, без идентификации. Амплитудные значения записаны в экспоненциальном формате. В конце файла запятая отсутствует.

Амплитудные значения записаны в экспоненциальном формате.

Пример: ТХТ-файл

1.000E-02,1.000E-02,1.000E-02,1.000E-02,3.000E-02

9.2.2.3 Формат BIN

Файлы BIN содержат только двоичные амплитудные значения и не содержат временных значений. Каждое значение имеет размер слова из 8, 16 или 32 битов, размер слова не меняется во всем файле.

Можно задать порядок байтов в словах: BIN MSBF сохраняет данные с использованием обратного порядка байтов, начиная со старшего байта MSB и заканчивая младшим LSB. BIN LSBF сохраняет данные, начиная с младшего байта LSB и заканчивая старшим MSB. Пары значений перечисляются в виде двух последовательных одиночных значений, без идентификации.

9.2.2.4 Формат FLT

Файлы FLT содержат амплитудные значения в формате чисел с плавающей запятой, где 4 последовательных байта сохраняются в виде 32-биного значения с плавающей запятой. Можно задать порядок байтов в словах: FLT MSBF сохраняет данные с использованием обратного порядка байтов, начиная со старшего байта MSB и заканчивая младшим LSB. FLT LSBF сохраняет данные, начиная с младшего байта LSB и заканчивая старшим MSB.

9.2.2.5 Формат TRF

TRF - это специальный двоичный формат для опорных осциллограмм прибора R&S RTM3000/RTA4004. Он содержит амплитудное значение каждого отсчета, который отображается на экране (длиной 8 или 16 бит). Для осциллограмм пикового детектирования сохраняются 2 значения на отсчет. Файл содержит также информацию о времени (время первого отсчета и интервал дискретизации) и текущих настройках прибора.

Данные могут быть загружены в виде опорной осциллограммы для дальнейшего использования в приборе. Формат не предназначен для анализа вне прибора R&S RTM3000/RTA4004.

9.3 Аннотации

С помощью инструмента аннотирования можно отметить важные места на диаграмме и добавить текстовые заметки. Затем аннотированную диаграмму можно сохранить в виде снимка экрана.

Создание аннотаций

- 1. Коснитесь значка аннотации "Annotation" на панели инструментов.
- 2. Используйте инструменты аннотирования для рисования и письма на экране.

Снимки экрана

- 1 = Включение / выключение аннотирования
- 2 = Инструменты рисования
- 3 = Текстовый инструмент
- 4 = Ластик для удаления отдельных строк
- 5 = Средство удаления всех аннотаций
- 3. Чтобы завершить работу с аннотациями повторно коснитесь значка "Annotation" на панели инструментов.

9.4 Снимки экрана

В приборе имеется возможность создания и сохранения снимков экрана с текущим изображением осциллограмм и результатов измерений. В осциллографе R&S RTM3000/RTA4004 снимки экрана сохраняются на флэш-накопителе USB. Для быстрого сохранения снимков экрана можно использовать значок "Screenshot" на панели инструментов или клавишу CAMERA.

Можно настроить клавишу CAMERA для сохранения снимков экрана одним нажатием клавиши. См. также гл. 9.5, "Быстрое сохранение с помощью функции OneTouch", на стр. 172.

Панель инструментов "Screenshot" служит для сохранения текущего отображения в файл в соответствии с настройками в меню "Файл" > "Снимки экрана". См. также "Настройка панели инструментов" на стр. 43.

Сохранение снимков экрана:

- 1. Нажмите клавишу SAVE LOAD.
- Отключите функцию "ВКасание"
- Нажимайте клавишу маждый раз, когда необходимо сохранить снимок экрана.

В качестве альтернативы коснитесь значка на панели инструментов "Screenshot". Чтобы видеть значок, добавьте его на панель инструментов.

Конфигурирование снимков экрана:

- 1. Нажмите клавишу SAVE LOAD.
- 2. Выберите пункт "Снимки экрана".
- Настройте целевой каталог ("Назначение"), имя файла, формат и цветовой режим.

Можно сохранить текущее отображение с помощью кнопки "Сохранить" или закрыть диалоговое окно. Настройки снимков экрана сохраняются и применяются при создании снимков экрана с помощью клавиши **ГО**.

Снимки экрана

Save - Scree	enshots					?	×
Destination							
/USB_FRON	T/SCREEN~1						
File Name					A	uto	Name
SCR03							×
Format			Color Mode				
PNG		¥	Color	•			
	Save				Close		

Назначение

Место назначения /USB_FRONT активно только при подключенном к порту USB на передней панели флэш-накопителю USB.

Коснитесь и выберите целевой каталог. Коснитесь кнопки "Принять кат." для подтверждения выбора.

Команда дистанционного управления: MMEMory: CDIRectory на стр. 499

Имя файла

Указание имени сохраняемого файла. Стандартное имя SCR01 или с более высоким номером, что зависит от существующих файлов в целевом каталоге.

Команда дистанционного управления: MMEMory: NAME на стр. 496

Формат

Выбор формата файла.

- "BMP": Bitmap это формат без сжатия, файлы имеют большой размер, и сохранение может занять некоторое время.
- "PNG": Portable Network Graphics это графический формат со сжатием без потерь.

Команда дистанционного управления: HCOPy:FORMat на стр. 497

Цвет. режим

Выбор цветовых настроек для сохраняемых снимков экрана.

- "Grayscale": Преобразование цветового отображения в монохромное изображение
- "Color": Сохранение исходных цветов отображения в снимке экрана.
- "Inverted": Инвертирование выходных цветов для того, чтобы темные осциллограммы распечатывались на белом фоне.
- "Inverted (gray)": Инвертирование выходных цветов и преобразование в монохромное изображение.

Команда дистанционного управления: HCOPy:COLor:SCHeme на стр. 497

Сохранить

Сохранение снимка экрана в указанном файле. Когда сохранение завершено, на экране отображается использованный путь и имя файла.

```
Команда дистанционного управления:
HCOPy[:IMMediate] на стр. 496
```

9.5 Быстрое сохранение с помощью функции OneTouch

Клавиша 🔯 инициирует одно или несколько назначенных действий по сохранению. По умолчанию клавиша сохраняет снимок экрана.

При включенной функции OneTouch клавише 🔯 можно назначить следующие действия:

- Сохранение настроек прибора.
- Сохранение снимка экрана.
- Сохранение осциллограмм.
- Сохранение опорных осциллограмм.
- Сохранение результатов поиска.
- Декодированные данные шины("Таблица шины", требуется как минимум одна протокольная опция для последовательной шины (-К1 ... К3).
- Статистические результаты. Функция OneTouch является единственным способом сохранения статистических результатов.

Все данные сохраняются в ZIP-файл на подключенном флэш-накопителе USB.

Настройка и использование функции OneTouch:

- 1. Подключите флэш-накопитель USB.
- 2. Нажмите клавишу SAVE LOAD.
- 3. Включите функцию "ВКасание".
- 4. Коснитесь кнопки "вкасание".
- Выберите целевой каталог ("Назначение"), имя файла и сохраняемые данные.

Экспорт и импорт

Save - OneTouch	? ×
Destination	
/USB_FRONT	
File Name	Auto Name
SAVE06	×
× Setup	
X Screenshots (PNG, Color)	
🗙 Waveforms (CSV, C1, Display Data)	
References	
Search Event Table	
Bus Table	
Statistics	
Save	Close

- 6. Коснитесь кнопки "Сохранить", чтобы сохранить текущие данные.
- 7. Закройте диалоговое окно.
- 8. Нажимайте клавишу 🔯 каждый раз, когда необходимо сохранить данные.

9.6 Экспорт и импорт

Для копирования опорных осциллограмм, формул (наборов уравнений) и настроек прибора из внутренней памяти на флэш-накопитель USB или наоборот используются функции импорта/экспорта "Импорт Экспорт".

Имя целевого файла можно менять, поэтому копирование и переименование файла может проводиться за одну операцию. Для опорных осциллограмм также можно изменить формат целевого файла и конвертировать данные в процессе экспорта/импорта.

- 1. Подключите флэш-накопитель USB.
- 2. Нажмите клавишу SAVE LOAD.
- Для копирования файлов настроек выберите функцию "Настройка" > "Импорт Экспорт".

Для копирования опорных осциллограмм выберите функцию "Опорные".

Экспорт и импорт

Меню импорта/ экспорта для опорных осциллограмм

- 4. Задайте исходный файл для операции копирования:
 - а) Коснитесь функции "Исх. файл".
 - b) При необходимости измените место хранения данных с помощью функции "Размещение".
 - с) Выберите каталог, содержащий исходный файл.
 - выберите файл. Маленький снимок экрана помогает идентифицировать файл.
 - е) Коснитесь функции "Загрузить".

Исходный файл будет выбран, но не загружен в прибор R&S RTM3000/ RTA4004.

- 5. Задайте целевой каталог.
 - а) Коснитесь функции "Путь назначения".
 - b) При необходимости измените место хранения данных с помощью функции "Размещение".
 - с) Выберите целевой каталог. Здесь также можно создать новый каталог.
 - d) Коснитесь функции "Принять кат.".
- 6. При необходимости измените имя целевого файла в поле "Имя назначения".

Примечание: Если файл с таким же именем уже существует в каталоге назначения, он будет перезаписан без предупреждения.

- Для опорных осциллограмм можно изменить формат файла в поле "Формат назначения".
- 8. Коснитесь функции "Импорт Экспорт".

Исходный файл будет скопирован в каталог назначения с указанным именем и форматом.

10 Общая настройка прибора

Общие настройки прибора доступны во всех режимах работы.

10.1 Настройки прибора

- Открытие меню "Настройка":
 - а) Коснитесь значка-ромба "Меню" в нижнем правом углу экрана.

b) Прокрутите список. Выберите пункт "Настройка".

Информация об устройстве

Отображение информации о приборе, в частности: серийный номер, установленная версия встроенного ПО и информация об аппаратном обеспечении. Данная информация необходима в случае запроса технической поддержки. Данное диалоговое окно также содержит ссылку на соглашение об использовании открытого ПО "Open Source Acknowledgment".

Язык

См. гл. 10.6, "Установка даты, времени и языка", на стр. 184.

Самовыравнивание

См. гл. 10.5, "Выполнение самовыравнивания", на стр. 182.

Регулировка пробника

Открытие мастера для выполнения компенсации пробника. Данную функцию можно также найти, нажав клавишу APPS SELECTION.

См.: гл. 10.7, "Настройка пассивных пробников", на стр. 185.

Интерфейс

Включение или выключение дополнительных интерфейсов прибора. Используйте эти интерфейсы для связи с прибором, например, для считывания данных или автоматизации измерительной станции. Интерфейсы USB и Ethernet (LAN) размещены на задней панели. После выбора интерфейса коснитесь пункта "Параметр", чтобы задать дополнительные параметры.

USB ← Интерфейс

Активация интерфейса USB типа В на задней панели для дистанционного управления прибором. Данный интерфейс USB обеспечивает простой способ подключения прибора к ПК. Поддерживается стандарт USB 2.0. Используйте соединительный кабель, подходящий для интерфейса USB типа В.

См. также: гл. 11.2, "Подключение по USB", на стр. 192.

Ethernet - Интерфейс

Активация интерфейса Ethernet на задней панели, который позволяет подключать прибор к другим различным устройствам. Доступ к прибору осуществляется по его IP-адресу.

По умолчанию прибор настроен на использование DHCP. Если прибор не может обнаружить DHCP-сервер, потребуется около двух минут, чтобы получить доступ к Ethernet-параметрам.

См. также: гл. 11.1, "Подключение по локальной сети (LAN)", на стр. 189.

Параметр - Интерфейс

Открытие диалогового окна для настройки Ethernet-параметров или выбора USBподключения, в зависимости от выбранного интерфейса.

Вспомогательный выход

Открытие меню "Вспомогательный выход" для задания генерируемых сигналов на переднем разъеме AUX OUT.

Настройки прибора

Aux Out		
Off		
Trigger Out		
10 MHz		
Function Generator		

"Выкл"	Отключение вспомогательного выхода.
"Выход	Вывод импульса при запуске прибора.
запуска"	
"10 МГц"	Вывод сигнала опорной частоты 10 МГц.

"Функц. ген."

Вывод сигнала, указанного в диалоговом окне "Функц. ген.".

"Нарушение маски"

Вывод импульса при нарушении маски. Данная функция доступна только при заданной маске в диалоговом окне "Маска".

Команда дистанционного управления: TRIGger:OUT:MODE на стр. 515

Обновл. встр.ПО

См. гл. 10.9, "Обновление встроенного ПО", на стр. 187.

Опции

См. гл. 10.8, "Опции", на стр. 186.

Дата и время

См. гл. 10.6, "Установка даты, времени и языка", на стр. 184.

Device Name (имя устройства)

Указание имени прибора для упрощения его идентификации. Имя отображается, например, на снимках экрана и в информации об устройстве.

Режим обучения

Отключение нескольких функций в учебных целях или включение этих функций для обычного использования.

"Режим обучения"

Если функция включена, отключаются и становятся недоступными функции автонастройки, быстрые и автоматические измерения. Включенный режим обучения обозначается в верхнем правом углу значком академической шапочки.

"Установить пароль"

Можно ввести пароль, чтобы предотвратить неавторизованное включение или отключение режима обучения.

"Очистить пароль"

Удаление пароля и разрешение пользователям включать и отключать режим обучения. Необходимо ввести пароль, чтобы выполнить его удаление.

С помощью команды дистанционного управления можно очистить пароль режима обучения без ввода пароля.

Komaндa дистанционного управления: SYSTem:EDUCation:PRESet на стр. 512

Безопасное стирание

Удаление данных текущей конфигурации прибора и пользовательских данных из внутреннего хранилища (например, опорных файлов, наборов уравнений, масок). Калибровочные данные остаются в хранилище.

Используйте эту функцию перед передачей прибора в сервисный центр. Если прибор эксплуатируется в защищенной среде, данная функция обеспечит удаление всей конфиденциальной информации перед тем, как прибор покинет охраняемую зону.

Непреднамеренному запуску функции "Безопасное стирание" препятствует уведомление, которое объясняет, что произойдет, если продолжить ее выполнение. Чтобы запустить функцию "Безопасное стирание", выберите ответ "Yes" (да), в противном случае выберите ответ "No" (нет). Не выключайте прибор до завершения процесса удаления данных.

10.2 Настройки отображения

 Чтобы удалить все осциллограммы и результаты измерений с экрана, нажмите клавишу CLEAR SCREEN.

- Открытие меню "Дисплей":
- а) Коснитесь значка "Меню" в нижнем правом углу экрана.
- b) Прокрутите список. Выберите пункт "Дисплей".

Display	
Persistence	Ç
	Off
Intensities	►
Dots Only	0
lnverse Brightness	0
Grid	►

 Чтобы удалить все осциллограммы и результаты с экрана, нажмите клавишу CLEAR SCREEN на передней панели.

Послесвечение

Определение функции послесвечения (эффекта послесвечения) осциллограммы на дисплее.

- "Off" Послесвечение отключено.
- "Manual" Пользовательское значение послесвечения согласно настройке "Время".
- "Infinite" Активация послесвечения с бесконечной длительностью. Каждая новая точка данных остается на экране бесконечно долгое время до тех пор, пока этот параметр не изменится или не будет произведена очистка экрана

Команда дистанционного управления: DISPlay: PERSistence: TYPE на стр. 505

Время - Послесвечение

Определение длительности послесвечения, если для функции "Послесвечение" установлено значение "Manual". Каждая новая точка данных остается на экране в течение заданного здесь времени. Диапазон значений от 50 мс (= по умолчанию) до 12,8 с. Команда дистанционного управления: DISPlay: PERSistence: TIME на стр. 506

Яркость

Функции для определения яркости (относительной световой интенсивности) отображаемых элементов и управления светодиодами.

Также можно открыть это меню напрямую, с помощью клавиши INTENSITY.

Intensities	
Waveform	Ċ
	50 %
Grid	Ċ
	50 %
LED Brightness	Ċ
	75 %

Осцилл-ма - Яркость

Определение яркости линий осциллограммы на диаграмме. Введите процентное соотношение в диапазоне от 0 (едва видно) до 100% или вращайте поворотную ручку NAVIGATION для прямой регулировки яркости осциллограммы. По умолчанию значение равно 50%.

Komaндa дистанционного управления: DISPlay:INTensity:WAVeform на стр. 508

Масштабная сетка Яркость

Определение яркости линий масштабной сетки на диаграмме. Введите процентное соотношение в диапазоне от 0 (едва видно) до 100% или вращайте поворотную ручку NAVIGATION для прямой регулировки яркости масштабной сетки. По умолчанию значение равно 50%.

Komaнда дистанционного управления: DISPlay: INTensity: GRID на стр. 508

Яркость LED ← Яркость

Определение яркости подсветки клавиш передней панели и поворотных ручек в процентах.

Komaндa дистанционного управления: DISPlay:INTensity:BACKlight на стр. 507

Только точки

Если функция включена, отображаются только отдельные точки данных. Если функция выключена, отдельные точки данных соединяются линиями.

Команда дистанционного управления: DISPlay:STYLe на стр. 509
Инверсная яркость

Инвертирование уровня яркости сигналов. Как правило, чаще встречающиеся значения отображаются ярче, чем редкие значения. Данный параметр инвертирует такой характер отображения: редкие значения отображаются ярче, чем частые. Используйте этот параметр в комбинации с функцией послесвечения для обнаружения редких значений в области осциллограммы.

Команда дистанционного управления: DISPlay: PALette на стр. 508

Масштабная сетка

Grid
III Lines
🖶 Reticle
Off
Annotation
Track Grid

Определение способа отображения масштабной сетки.

"Линии"	Отображение масштабной сетки в виде горизонтальных и верти-
	кальных линий.

"Перекрестие" Отображение перекрестия вместо сетки.

"Выкл" Удаление масштабной сетки с экрана.

Команда дистанционного управления: DISPlay:GRID:STYLe на стр. 507

Включение или отключения отображения значений шкалы и единиц измерения для осей X и Y на линиях сетки. По умолчанию, метки масштабной сетки включены.

Если функция включена, масштабная сетка перемещается вместе с осциллограммами при изменении их положения по горизонтали или вертикали.

Если функция выключена (по умолчанию), масштабная сетка остается центрированной на экране при изменении положения осциллограмм.

10.3 Сброс

Сброс настроек полезно производить, если прибор находится в неопределенном состоянии и работа с ним невозможна.

Чтобы сбросить все настройки осциллограмм и измерений:

Нажмите PRESET.

Функция предустановки Preset не изменяет настройки отображения (например интенсивность и яркость). Чтобы сбросить эти параметры, восстановите заводские настройки.

Чтобы восстановить заводские настройки:

- 1. Нажмите SAVE LOAD.
- 2. Коснитесь функции "Настройка".
- 3. Коснитесь функции "Заводские настройки".

Если нет возможности сбросить прибор с помощью клавиш и сенсорного экрана, выполните следующие действия:

- 1. Завершите работу прибора: нажмите клавишу STANDBY.
- 2. Запустите прибор: нажмите клавишу STANDBY.
- Как только на начальном экране появится сообщение "Press Autoset to restore English language" (Нажмите Autoset для восстановления английского языка): Нажмите и удерживайте клавишу Preset до тех пор, пока не откроется диалоговое окно "Update firmware" (обновление встроенного ПО).
- 4. Коснитесь функции "Выход", чтобы закрыть диалоговое окно.

Все настройки прибора будут сброшены на стандартные заводские значения, и прибор можно будет использовать в обычном режиме.

10.4 Блокировка сенсорного экрана

Клавиша Touch Lock блокирует сенсорный экран от непреднамеренного использования. Клавиша подсвечивается, если сенсорный экран отключен. Повторное нажатие разблокирует сенсорный экран.

10.5 Выполнение самовыравнивания

Процедура самовыравнивания служит для выравнивания данных с нескольких входных каналов по вертикали и горизонтали с целью синхронизации временной развертки, амплитуд и положений осциллограмм. Выполнение самовыравнивания рекомендуется в следующих случаях:

- при первоначальном вводе прибора в эксплуатацию
- после обновления встроенного ПО
- еженедельно
- при значительных изменениях температуры (> 5°)

ПРЕДУПРЕЖДЕНИЕ

Подготовка прибора для самовыравнивания

Перед началом процедуры самовыравнивания следует убедиться, что прибор запущен и прогревается. Минимальное время прогрева указано в технических данных прибора.

Перед выполнением процедуры самовыравнивания отключите все пробники, провода и другие соединительные линии от входных разъемов прибора.

- 1. Отсоедините все пробники, провода и все остальные соединительные линии от входов прибора.
- 2. Откройте меню "Настройка".
- 3. Коснитесь функции "Самовыравнивание".
- 4. Коснитесь функции "Начало".

Процедура выравнивания может занять до 15 минут. Процесс можно остановить с помощью кнопки "Прервать".

- По завершении процесса коснитесь кнопки "ОК", чтобы закрыть окно сообщения.
- 6. Коснитесь функции "Выход".

Описание настроек

Начало

Запуск внутренней самокалибровки прибора. Информация о состоянии отображается на экране.

Команда дистанционного управления: CALibration на стр. 509

Сохранить файл журнала выравнивания

В файл журнала записываются результаты выполнения процедуры самовыравнивания. Данная функция сохраняет файл журнала.

Komaнда дистанционного управления: CALibration:STATe? на стр. 509

10.6 Установка даты, времени и языка

Прибор оснащен часами, отображающими дату и время. Можно установить местное время и выбрать язык графического интерфейса. Поддерживаемые языки указаны в технических данных. Справка предоставляется на английском языке. Перезагрузка прибора не требуется.

Установка даты и времени

- 1. Откройте меню "Настройка".
- Прокрутите меню вниз. Коснитесь функции "Дата и время".
- Выберите дату: прокручивайте столбцы (год, месяц и день) до тех пор, пока не будет установлена нужная дата.
- Выберите время: прокручивайте столбцы (часы и минуты) до тех пор, пока не будет установлено нужное время.

5. Коснитесь кнопки "Save" (сохранить).

Установка языка интерфейса

- 1. Откройте меню "Настройка".
- 2. Коснитесь функции "Язык".
- 3. Выберите нужный язык.

Язык интерфейса будет изменен незамедлительно.

Описание настроек

Язык

Выберите язык, на котором будут отображаться ярлыки и прочая информация на экране. Справка предоставляется только на английском языке.

Команда дистанционного управления: DISPlay:LANGuage на стр. 505

Общая настройка прибора

Дата и время

Открытие диалогового окна для установки в приборе текущей даты и времени.

Команда дистанционного управления: SYSTem:DATE на стр. 510 SYSTem:TIME на стр. 510

10.7 Настройка пассивных пробников

Пассивные пробники, поставляемые вместе с прибором, уже предварительно подстроены к характеристикам осциллографа R&S RTM3000/RTA4004, поэтому проведения процедуры компенсации не требуется.

При использовании других пассивных пробников необходимо провести их компенсацию при первом подключении к прибору. Компенсация выполняет задачу согласования емкости кабеля пробника с входной емкостью осциллографа с целью обеспечения хорошей точности по амплитуде в диапазоне от постоянного тока до верхних граничных частот полосы пропускания. Плохо скомпенсированные пробники снижают рабочие характеристики системы пробник-осциллограф и вносят погрешности в измерение, что приводит к искажению осциллограмм и получению неточных результатов.

Два контакта разъема для компенсации расположены на передней панели. Левый контакт имеет уровень земли. На правый контакт выводится прямоугольный сигнал (меандр) для регулировки.

- 1. Нажмите клавишу **Ш** APPS SELECTION.
- Коснитесь функции "Регулировка пробника".
- Следуйте указаниям мастера. С его помощью пошагово выполняется весь процесс компенсации.

Используйте компенсирующий регулятор пробника таким образом, чтобы добиться оптимального отображения прямоугольного сигнала. Подробнее см. документацию на пробник.

optimum

overcompensated

undercompensated

10.8 Опции

Все опции активируются программными ключами лицензий. Опции не требуют дополнительной установки или изменений в аппаратной части прибора.

Незарегистрированные лицензии

Незарегистрированные лицензии не могут быть назначены конкретному прибору. Прибор принимает только зарегистрированные лицензии. Если вам поставлена незарегистрированная лицензия, используйте онлайн-инструмент для управления лицензиями R&S License Manager, чтобы зарегистрировать лицензию для своего прибора. Регистрация постоянной лицензии необратима, поэтому убедитесь, что лицензия регистрируется на правильный прибор. Адрес инструмента управления лицензиями: https://extranet.rohde-schwarz.com/service.

На вкладке "Активные опции" содержится информация об установленных программных опциях. Здесь можно установить новые опции или деактивировать существующие опции с помощью лицензионных ключей.

На вкладке "Неактивные опции" перечислены все деактивированные опции и опции с истекшим сроком действия.

На вкладке "Деактивированные опции" показаны все деактивированные опции с соответствующей информацией о деактивации, а также содержится функция экспорта ответа деактивации. Ответ необходим для менеджера лицензий R&S License Manager.

10.8.1 Активация опций

Для получения лицензионного ключа обратитесь к торговому представителю и сообщите ему децимальный и серийный номера, а также идентификационный номер своего прибора. Данная информация находится в меню "Настройка" > "Информация об устройстве".

Лицензионный ключ поставляется в письменной форме или в виде файла. Незарегистрированные лицензии должны быть зарегистрированы в менеджере лицензий R&S License Manager, прежде чем они могут быть активированы в приборе.

- 1. Если ключ опции получен в виде файла, сохраните файл на USB-носитель.
- 2. Подключите носитель к прибору R&S RTM3000/RTA4004.
- 3. Коснитесь значка "Меню" в нижнем правом углу экрана.

- 4. Прокрутите меню вниз. Коснитесь функции "Настройка".
- 5. Выберите пункт "Опции".

 Если ключ получен в письменном виде, коснитесь функции "Ввести ключ опции вручную". Введите ключ.

Если ключ получен в цифровой форме в виде файла, коснитесь функции "Считать ключ опции из файла". Выберите путь /USB_FRONT и файл с ключом опции.

Options	
Read option key from file	
Input option key manually	
Options	Ċ
Active Options	*

- Если необходимо активировать несколько опций, повторите шаг 5 для каждой из них.
- 8. Перезапустите прибор.

10.9 Обновление встроенного ПО

Прибор поставляется с последней имеющейся версией встроенного ПО. Обновления встроенного ПО доступны в сети Интернет по адресу www.rohdeschwarz.com/firmware/rtb2000. Вместе с файлом встроенного ПО поставляются примечания к выпуску ПО, в которых описываются сделанные улучшения и изменения.

Обновляйте встроенное ПО при появлении новой версии.

- 1. Скачайте файл установки встроенного ПО RTB200*. fwu на флэш-накопитель USB.
- Подключите флэш-накопитель USB к разъему USB на передней панели прибора.
- 3. Коснитесь значка "Меню" в нижнем правом углу экрана.

- 4. Прокрутите меню вниз. Коснитесь функции "Настройка".
- 5. Выберите пункт "Обновл. встр.ПО" Теперь в окне информации можно увидеть информацию об установленной и новой версии ПО, а также версии ПО контроллера входного каскада. Если имеющаяся версия встроенного ПО не новее, чем установленная, появится соответствующее сообщение.

 Коснитесь кнопки "Выполнить" для запуска обновления встроенного ПО. Дождитесь окончания процедуры обновления. После установки ПО прибор автоматически перезапустится.

Подключение по локальной сети (LAN)

11 Подключение к сети и удаленная работа с прибором

11.1 Подключение по локальной сети (LAN)

Прибор R&S RTM3000/RTA4004 оснащен сетевым интерфейсом и может быть подключен к ЛВС (локальной сети) Ethernet. Сетевое подключение необходимо для дистанционного управления прибором, а также для доступа к нему с компьютера с помощью веб-браузера.

Подсоединение прибора к локальной сети

- 1. Подключите сетевой кабель к разъему LAN на задней панели прибора.
- 2. Откройте меню "Настройка".
- 3. Коснитесь функции "Интерфейс".

Если пункты меню затенены, подключение выполнить не удалось. Проверьте подключение сетевого кабеля и доступность сети.

- 4. Коснитесь функции "Ethernet" для выбора сетевого подключения.
- 5. Коснитесь функции "Параметр".

На экран будут выведены подробные сведения о подключении, которые можно будет сохранить в файл.

DOW Подключение по локальной сети (I

Ethernet Setup				
IP Mode	DHCP/Auto IP 🗸 🗸			1 TM
IP	10.113. 1.72			
Subnet mask	255.255.252. 0			
Gateway	10.113. 0. 1			
DNS Server	10. 0. 23.153			
IP Port	5025	Transfer	Auto 🗸	
VXI-11 Port	1024		1 Gbps - Full Duplex	
Link	Yes			
MAC	00-90-b8-1e-b3-47			
VISA	TCPIP::10.113.1.72::INSTR	Status	DHCP, IP address received	
Host name	R-RTB2004-00012	Password		

Рис. 11-1: Пример диалогового окна настройки Ethernet-подключения с различными сетевыми настройками

Описание настроек

IP Mode (режим IP)

Выбор режима работы по протоколу IP:

- "Manual": Предназначен для случаев, если сеть не поддерживает протокол динамической конфигурации хоста (DHCP). Адреса должны быть назначены вручную.
- "DHCP/Auto IP": включение функции DHCP для автоматического распределения и отображения сетевых параметров. По умолчанию, прибор настроен на использование динамической конфигурации и получает всю адресную информацию автоматически. Это безопасный способ установления физического подключения прибора к локальной сети без какой-либо предварительной настройки.

Имейте в виду, что обновление значений (например, после отключения сетевого кабеля и обратного его подключения) может занять некоторое время, в зависимости от реакции сети.

Команда дистанционного управления: SYSTem:COMMunicate:INTerface:ETHernet:DHCP Ha CTp. 513

IP, Subnet mask, Gateway, DNS Server (IP, маска подсети, шлюз, DNS-сервер) Служит для отображения или определения следующих параметров:

- ІР-адрес прибора.
- IP-маска подсети, используемая прибором.
- IP-шлюз, используемый прибором.
- Адрес сервера доменных имен.

Подключение по локальной сети (LAN)

Команда дистанционного управления:

SYSTem:COMMunicate:INTerface:ETHernet:IPADdress Ha ctp. 513 SYSTem:COMMunicate:INTerface:ETHernet:SUBNet Ha ctp. 513 SYSTem:COMMunicate:INTerface:ETHernet:GATeway Ha ctp. 513

IP Port, VXI-11 Port (порт IP, порт VXI-11)

Определение номера IP-порта (по умолчанию = 5025) и номера порта VXI-11 (по умолчанию = 1024).

Команда дистанционного управления:

SYSTem:COMMunicate:INTerface:ETHernet:IPPort **Ha ctp. 514** SYSTem:COMMunicate:INTerface:ETHernet:HTTPport **Ha ctp. 514**

Link (связь)

"Yes" (да), если прибор подключен к локальной сети через интерфейс LAN на задней панели.

"No" (нет), если LAN-подключение не обнаружено.

Transfer (передача)

Включение автоматического выбора скорости передачи данных и отображение текущего выбранного значения.

Альтернативный вариант: можно выбрать одну из предварительно заданных настроек, соответствующих скорости обмена данными в сети.

Команда дистанционного управления:

SYSTem:COMMunicate:INTerface:ETHernet:TRANsfer Ha CTp. 514

MAC, VISA

Индикация адреса управления доступом к среде (MAC) и адреса архитектуры программного обеспечения виртуальных приборов (VISA), которые используются для адресации прибора в режиме дистанционного управления.

Komaндa дистанционного управления: SYSTem:COMMunicate:INTerface:ETHernet:MACaddress? на стр. 514

Host name (имя хоста)

Индикация или определение имени прибора, которое прибор может использовать для подключения к DHCP серверу.

Status (состояние)

Индикация состояния подключения, например "Allocating network address" (pacпределение сетевых адресов) или "DHCP, IP address received" (режим DHCP, получение IP адреса).

Password (Пароль)

Определение опционального пароля для удаленного доступа к прибору.

11.2 Подключение по USB

Кроме подключения по локальной сети можно использовать разъем USB на задней панели для доступа к прибору по шине USB.

Подключение прибора с помощью USB-соединения

- 1. Подключите USB-кабель к разъему USB типа В на задней панели прибора и к компьютеру.
- 2. Откройте меню "Настройка".
- 3. Коснитесь функции "Интерфейс".

🚓 USB	
Ethernet	
Parameter	►

- 4. Коснитесь функции "USB" для выбора USB-подключения.
- 5. Коснитесь пункта "Параметр".
- 6. Выберите режим USB:.
 - USB TMC (Test & Measurement Class)
 - USB VCP (Virtual Com Port)
 - USB MTP (Media Transfer Protocol)

11.2.1 USB TMC

USB TMC означает интерфейс USB для класса контрольно-измерительных устройств. Можно использовать этот интерфейс для дистанционного управления прибором с помощью команд SCPI. Для USB TMC не требуется установки драйвера, но на управляющем компьютере должна быть установлена библиотека VISA. VISA используется для доступа к прибору, передачи команд дистанционного управления и чтения информации о состоянии.

Компания Rohde & Schwarz предоставляет стандартизованную программную библиотеку ввода/вывода R&S VISA для связи по интерфейсам TCP/IP (LAN: HiSlip, VXI-11) или USB (USBTMC). R&S VISA доступна для скачивания на вебсайте компании Rohde & Schwarz www.rohde-schwarz.com/rsvisa.

11.2.2 USB VCP

USB VCP использует виртуальный COM-порт (VCP) для связи с измерительным прибором. Можно использовать любую терминальную программу для передачи команд SCPI. Для USB VCP требуется установка драйвера USB VCP на управляющем компьютере. Если на компьютере запрашивается установка драйвера, можно скачать его на веб-сайте компании Rohde & Schwarz (www.rohde-schwarz.com/de/treiber/hmo/, HO732). Для установки драйвера требуются права администратора.

11.2.3 USB MTP

USB MTP - это USB протокол передачи данных на мультимедийные устройства. Это решение для загрузки данных из осциллографа на компьютер. Дистанционное управление с помощью команд SCPI не поддерживается.

USB MTP не требует установки драйвера. Если прибор и компьютер соединены USB-кабелем, а в качестве интерфейса выбран USB MTP, с компьютера можно получить доступ к данным осциллографа. На компьютере осциллограф будет виден в Диспетчере устройств и диспетчере файлов в виде портативного прибора.

11.3 Удаленный доступ с помощью веб-браузера

Встроенное ПО прибора R&S RTM3000/RTA4004 содержит веб-сервер. Если установлено сетевое подключение, можно получить удаленный доступ к прибору с помощью веб-браузера на управляющем компьютере.

Доступ через браузер позволяет:

- проверять данные прибора
- управлять прибором удаленно
- печатать снимки экрана
- передавать команды дистанционного управления
- сохранять осциллограммы и данные прибора
- проверять сетевые настройки

11.3.1 Доступ к прибору с помощью веб-браузера

Для доступа к осциллографу R&S RTM3000/RTA4004 необходимо иметь подключение к локальной сети и IP-адрес прибора.

- 1. Получите IP-адрес прибора R&S RTM3000/RTA4004:
 - Коснитесь зеленого значка сети в верхнем правом углу экрана.

Удаленный доступ с помощью веб-браузера

- Меню "Настройка" > "Интерфейс" > "Ethernet" > "Параметр" > "IP".
- 2. Откройте интернет-браузер на управляющем компьютере.
- Введите IP-адрес прибора R&S RTM3000/RTA4004 в адресную строку: http://:xxx.yyy.zzz.xxx.

Откроется домашняя страница прибора "Instrument Home".

11.3.2 Страница Instrument Home (домашняя страница)

На домашней странице прибора "Instrument Home" содержится информация о приборе и сетевом подключении.

	Instrument Home			Print view 싫
Instrument Home	Manufacturer:	Rohde&Schwarz	Ethernet Port	
Screenshot	Device Class: Device Type:	Oscilloscope RTB2004	Description: Host name:	Rohde&Schwarz RTB2004 - 101136 R-RTB2004-01136.local.
SCPI Device Control	Serial Number: Firmware Version:	1333.1005k04/101136 02.000	MAC-Address: IP Mode:	00-90-B8-1F-19-00 Automatic
Save/Load	THE REAL PROPERTY AND A CONTRACTOR	er 1388ab	IP Address: Subnet mask:	10.124.1.15 255.255.252.0
Network Settings			Default Gateway:	10.124.0.1
Change Password			IP Port:	5025
Livescreen			Transfer: VISA Resource String:	100 Mbps - Full Duplex TCPIP::10.124.1.15::INSTR
Remote Front Panel			Device Identification:	⊖ On ● Off
			USB Device Port	
		_	Vendor ID: Product ID:	0AAD (hex) 01D7 (hex)

11.3.3 Страница Screenshot (снимок экрана)

На странице "Screenshot" показывается копия экрана прибора. Здесь также содержатся функции управления прибором и настройки снимков экрана.

Страница Instrument control (управление прибором)

- "Run" и "Stop" = запуск и остановка непрерывного сбора данных, то же, что клавиша RUN STOP на приборе.
- "Single" = клавиша Single на приборе
- "Autoset" = клавиша AUTOSET на приборе
- "Preset" = клавиша PRESET на приборе

R&S®RTM3002, R&S®RTM3004, R&S®RTA4004 Подключение к сети и удаленная работа с прибо-

Удаленный доступ с помощью веб-браузера

Снимки экрана

- "Auto refresh" (автообновление) и "Update" (обновить)
 Получение с прибора текущего содержимого экрана. С помощью функции
 "Auto refresh" можно установить интервал автоматических обновлений.
- "Format" (формат) и "Color mode" (цветовой режим):
- Установка формата файлов и цветового режима снимков экрана.
- Чтобы сохранить снимок экрана, *щелкните на изображении правой кнопкой мыши* и выберите команду "Save image as" (сохранить снимок как).

11.3.4 Страница SCPI Device Control (управление устройством SCPI)

На странице "SCPI Device Control" можно проверить работу функции передачи команд дистанционного управления.

Можно ввести отдельную команду, например; *IDN?, и передать ее кнопкой "Send". Не нажимайте клавишу ENTER.

Удаленный доступ с помощью веб-браузера

Если переданная команда содержит ошибку, в фоновом режиме будет сформировано сообщение об ошибке, а ответ не будет получен. Увидеть сообщения об ошибках можно с помощью функций "Last Error Message" и "All Error Messages"

SCPI Device Control

The device may be controlled with special commands (SCPI - Standard Commands for Programmable Instruments). Please take the respectively valid instruction set from the documentation delivered with the device. If you type a wrong command or use a wrong syntax, the device creates an error message which is not send immediately, complying with the standard, but can be requested separately. In this case you will **not** get a response. An easy way to request the error messages is to use the two buttons.

Command:	*IDN?	Send
	Last Error Message All Error Messages	
	Rohde&Schwarz, RTB2004, 1333. 1005k04/900012, 01. 200	
Response:		

11.3.5 Страница Save/Load (сохранить/загрузить)

На странице "Save/Load" можно сохранить данные осциллограммы и настройки прибора в файл - либо на компьютере (локальный файл), либо на приборе. На компьютере стандартным каталогом хранения является папка загрузок, но ее можно изменить с помощью функций скачивания браузера. На приборе файлы сохраняются во внутреннем хранилище.

Также можно загружать в прибор из файла опорные осциллограммы и настройки прибора ("Load from local host").

Сохранение данных в файл на компьютере

- 1. В разделе "Save to local file" (сохранить в локальный файл) выберите осциллограмму или настройки устройства в списке "Source" (источник).
- 2. Выберите формат файла "Format".

См. также:

- гл. 9.2.2, "Форматы файлов осциллограмм", на стр. 167
- гл. 6.3, "Опорные осциллограммы", на стр. 95

Удаленный доступ с помощью веб-браузера

- Для аналоговых и цифровых каналов выберите диапазон считываемых данных: отображаемые данные ("Display Data") или все собранные данные ("Acq. Memory").
- 4. Щелкните по пункту "Save" (сохранить).

If you want to save a waveform to a file, you first have to select the waveform, format and data. The number of samples and the file size will be indicated below. To download the waveform file, use the "Save" button.

Save to local host			
Source: Channel 1 V	Format: TXT 🗸	Points: Display Data 🗸	Save
Source: Channel 1			
Samples: 100000 File size (approx.): 1123 kB			
Sample number may be reduce	d due to running acquisition.		
Lood from Lood hash (may DEC b)	-		
Load from local host (max. 256 ki	3)		
Destination: Reference 1 V	Source File:	Browse	Load
Save to file on instrument			
Source: Channel 1 V	Dest. File:		Save
Load from file on instrument			
Destination: Reference 1 V	Source File: AUTOSAVE_ARB.TR	F V	Load

11.3.6 Страница Network settings (сетевые настройки)

На странице "Network Setting" можно изменить настройки порта, отключить получение адреса по DHCP и ввести IP-адрес более удобным способом, чем непосредственно на приборе. Чтобы изменения вступили в силу, передайте их в прибор нажатием кнопки "Submit".

Кнопка "Reset" (сброс) удаляет все модифицированные значения, которые еще не были переданы в прибор.

R&S®RTM3002, R&S®RTM3004, R&S®RTA4004 Подключение к сети и удаленная работа с прибо-

Удаленный доступ с помощью веб-браузера

Network Settings

Print view ⊘

Warning: Changing the network settings may result in loss of connection!

Host name	R-RTB2004-01136		
Description	Rohde&Schwarz RTB2004 - 101136		
IP Mode	Automatic O Manual		
IP Address	10 . 124 . 1 . 15		
Subnet mask	255 . 255 . 252 . 0		
Default Gateway	10 . 124 . 0 . 1		
DNS Server	10 . 0 . 23 . 153		
IP Port	5025		
Transfer	Auto 🗸		
	Submit Reset		

11.3.7 Страница Change Password (изменить пароль)

На странице смены пароля "Change Password" можно изменить или удалить пароль для защиты режима удаленного доступа к прибору. Альтернативный вариант: можно изменить пароль в диалоговом окне Ethernet настроек на приборе.

11.3.8 Страница Livescreen (текущее изображение)

Можно просматривать текущее изображение на экране прибора. Управление прибором невозможно, в один момент времени доступно только одно удаленное подключение к текущему изображению. Используйте эту страницу, например, для демонстрационных целей.

Для возврата в меню страницы нажмите кнопку "Back" (назад).

11.3.9 Страница Remote Front Panel (удаленная передняя панель)

На странице "Remote Front Panel" можно удаленно управлять прибором с помощью эмулируемой передней панели. Будет показано текущее изображение прибора. Можно использовать клавиши, поворотные ручки и меню таким же образом, что и на самом приборе. В один момент времени доступно только одно удаленное подключение к удаленной передней панели.

Для возврата в меню страницы нажмите кнопку "Back" (назад).

12 Анализ последовательных шин

С помощью прибора R&S RTM3000/RTA4004 и дополнительных опций можно проводить анализ данных следующих последовательных протоколов:

- SPI без CS (последовательный периферийный интерфейс с 3 линиями) и SPI с CS (последовательный периферийный интерфейс с двумя линиями) требуется наличие опции -K1
 См. гл. 12.2, "Шина SPI (опция -K1)", на стр. 208.
- I²C (шина межсоединений интегральных схем) требуется наличие опции -К1 См. гл. 12.3, "I²C (опция -К1)", на стр. 217.
- UART/RS232 (последовательный интерфейс EIA-232) требуется наличие опции -K2

См. гл. 12.4, "UART / RS232 (опция -K2)", на стр. 227.

- САN (сеть контроллеров) требуется наличие опции -КЗ См. гл. 12.5, "Шина САN (опция -КЗ)", на стр. 235.
- LIN (коммутируемая локальная сеть) требуется наличие опции -К3 См. гл. 12.6, "Шина LIN (опция -К3)", на стр. 248.
- Аудиосигналы требуется наличие опции См. гл. 12.7, "Аудиосигналы (опция -К5)", на стр. 261.
- MIL-1553 требуется наличие опции См. гл. 12.8, "MIL-STD-1553 (опция -K6)", на стр. 270.
- ARINC 429 требуется наличие опции См. гл. 12.9, "Шина ARINC 429 (опция -К7)", на стр. 281.

Для анализа сигналов параллельных шин требуется опция MSO -B1 для доступа к логическим каналам. См. гл. 14, "Логический анализатор (опция -B1, MSO)", на стр. 345.

12.1 Основы анализа протоколов

Анализ последовательных данных включает следующие основные этапы:

- Конфигурирование протокола:
 Выбор типа протокола, конфигурирование входных линий и задание настроек протоколов.
- Декодирование:

Выбор формата отображения декодированных данных. Оцифрованный сигнал отображается на экране вместе с содержимым декодированных сообщений в виде ячеек. Поддерживается возможность масштабирования сигнала для более подробного отображения его характеристик.

Кроме того, результаты декодирования могут быть представлены в таблице данных шины.

• Запуск:

Поддерживается возможность запуска по различным событиям, характерным для сконфигурированной шины. Например, запуск по началу или концу сообщений или по шаблону данных.

• Поиск:

Для шин CAN и LIN представлена функция поиска по событиям. Поиск по событиям аналогичен запуску по событиям. Функция поиска позволяет обнаружить все события в полученной выборке, тогда как функция запуска определяет только событие запуска.

Анализ данных может проводиться как для аналоговых, так и для цифровых входных каналов. Цифровые каналы требуют наличия опции MSO -B1.

Для протоколов поддерживается возможность конфигурирования 4 шин с последующим выбором одной из настроенных шин для проведения анализа.

•	Протокол - общие настройки	.200
•	Отображение результатов декодирования	.202
•	Таблица данных шины: Результаты декодирования.	203
•	Метки шин	.204
•	Список меток	205

12.1.1 Протокол - общие настройки

► Для вызова меню настройки протокола нажмите клавишу PROTOCOL.

Общие настройки в меню "Protocol" (протокол) позволяют задать тип шины и вызвать дополнительные меню для настройки отображения декодированного сигнала шины.

Рис. 12-1: Меню протокола с дополнительным меню выбора типа шины

Шина

Выберите шину для конфигурирования и анализа.

Тип шины

Задайте тип шины или интерфейса для анализа. Доступные шины зависят от установленных опций.

Команда дистанционного управления: BUS: TYPE на стр. 516

Декодировать

Включение функции декодирования протокола для выбранной шины.

Команда дистанционного управления: BUS:STATe на стр. 516

Конфигурация

Вызов или закрытие диалогового окна с параметрами конфигурации выбранной шины.

Конфигурирование протокола в ручном режиме рассматривается в последующих главах:

- гл. 14.5, "Параллельные шины", на стр. 350
- гл. 12.2.2, "Конфигурация шины SPI", на стр. 209
- гл. 12.3.2, "Конфигурация протокола I²C", на стр. 220
- гл. 12.4.2, "Конфигурация протокола UART", на стр. 228
- гл. 12.5.1, "Конфигурация шины САN", на стр. 235
- гл. 12.6.2, "Конфигурация шины LIN", на стр. 250

Запуск

Вызов окна настройки запуска для выбранного протокола.

Запуск по данным протоколов рассматривается в последующих главах:

- гл. 12.2.3, "Запуск SPI", на стр. 213
- гл. 12.3.3, "Запуск по шине I²C", на стр. 221
- гл. 12.4.3, "Запуск по шине UART", на стр. 231
- гл. 12.5.2, "Запуск по сигналам шины CAN", на стр. 237
- гл. 12.6.3, "Запуск по сигналам шины LIN", на стр. 252

Запуск по сигналам параллельных шин невозможен.

Примечание: Выбор "Запуск" в меню протокола автоматически включает функцию декодирования протокола.

Настр. отображ.

Вызов меню для задания настроек отображения, таких как форматы данных. Настройки отображения действительны для всех типов протоколов.

См. гл. 12.1.2, "Отображение результатов декодирования", на стр. 202.

Список меток

Вызов меню для загрузки и включения списка с символьными именами адресов или идентификаторов. Доступно только для шин CAN и LIN.

См. гл. 12.1.5, "Список меток", на стр. 205.

Таблица шины

Вызов меню для задания настроек таблицы данных шины для декодированных кадров выборки.

См. гл. 12.1.3, "Таблица данных шины: Результаты декодирования", на стр. 203.

Метка

Вызов меню для задания метки для выбранной шины.

См. гл. 12.1.4, "Метки шин", на стр. 204.

12.1.2 Отображение результатов декодирования

По завершении конфигурирования последовательной шины прибор может начать декодирование сигнала. Результаты декодирования отображаются в двух форматах:

- Сигнал шины с ячейками и временной привязкой к входным сигналам. В ячейках приводятся значения кадров или слов.
- Таблица данных шины. В таблице представлены значения данных и временная информация кадров или слов. Более подробную информацию см. в гл. 12.1.3, "Таблица данных шины: Результаты декодирования", на стр. 203.

Декодирование данных последовательных шин

В меню "Шина" выберите "Декодировать".

Отобразится сигнал шины с ячейками. Цвета ячеек зависят от протокола и рассматриваются в главах "Результаты декодирования" описания протокола.

Настройка масштаба и расположения декодированного сигнала шины

- Размер ячеек по горизонтали определяется настройками временной шкалы, одинаковыми для входных сигналов и сигналов шины. Для изменения временного масштаба воспользуйтесь поворотной ручкой SCALE в области Horizontal.
- Для задания позиции запуска воспользуйтесь поворотной ручкой POSITION в области Horizontal.
- 3. Размер и положение по вертикали зависят от выбранного сигнала шины.
 - а) Коснитесь сигнала шины на экране для установки на нем фокуса ввода.
 - b) Для настройки высоты ячеек воспользуйтесь поворотной ручкой SCALE в области Vertical.
 - с) Для перемещения сигнала шины по вертикали воспользуйтесь верхней поворотной ручкой в области Vertical.
 - d) Для центрирования сигнала на отображении нажмите верхнюю ручку в области Vertical.

Команды дистанционного управления

• BUS:DSIZe Ha ctp. 518

• BUS: POSition Ha ctp. 518

Настройка формата данных и отображения разрядных линий

- 1. Нажмите клавишу PROTOCOL.
- 2. Выберите функцию "Настр. отображ.".

Display Setup	
Display	Ċ
Hexadecimal	*
Bits	

Отображ.

Выберите формат декодирования данных: двоичный, шестнадцатеричный, десятичный, восьмеричный или ASCII. Настройки применяются к данным в ячейках декодированных шин, а не к таблице данных шины.

Команда дистанционного управления: BUS:FORMat на стр. 517

Биты

Включение функции отображения отдельных разрядных линий над декодированной шиной.

Команда дистанционного управления: BUS:DSIGnals на стр. 517

12.1.3 Таблица данных шины: Результаты декодирования

В таблице данных шины приводятся подробные результаты декодирования для каждого кадра выборки. В ходе процедуры сбора данных непрерывно обновляется. После остановки процедуры сбора данных можно получить доступ к отдельных кадрам и выполнить их анализ.

Вызов таблицы данных шины

- 1. В меню "Шина" выберите "Таблица шины".
- 2. Выберите функцию "Таблица шины".

Пункт меню будет выделен, и таблица данных шины отобразится под диаграммой.

Перемещение по содержимому таблицы данных шины

- 1. Для изменения размера таблицы воспользуйтесь кнопками со стрелками, расположенными слева или справа на отображении.
- 2. Остановите процедуру сбора данных.

- 3. В меню "Таблица шины" выберите "Отслеж. кадр".
- 4. Коснитесь кадра в таблице данных шины.

Начало выбранного кадра указывается линией и символом ромба. Этот маркер смещается к центру диаграммы вслед за декодированными данными.

Bus Table	
Bus Table	
Track Frame	
Frame time difference	
Save	

Таблица шины

Отображение или скрытие таблицы декодированных данных сигнала.

Komaнда дистанционного управления: BUS:RESult на стр. 518

Отслеж. кадр

Если функция включена, выбранный кадр в таблице данных шины автоматически синхронизируется с отображением осциллограммы.

Эта функция доступна только при остановленной процедуре сбора данных.

Временная разница кадров

Если функция выбрана, в столбце времени таблицы данных шины указывается временной интервал между текущим и предыдущим кадрами. Столбец обозначается как "Time diff." (временной интервал). Если функция отключена, в столбце "Start Time" (время начала) отображается абсолютное значение времени относительно точки запуска.

Сохранить

Вызов меню "Save" (сохранить) для сохранения декодированных данных в файл CSV (список разделенных запятой значений).

12.1.4 Метки шин

Метка шины - это ее имя. Метка шины указывается в правой части отображения на сигнале шины, а также в таблице данных шины.

Не следует путать "Метка" и "Список меток". "Метка" относится к имени шины, тогда как "Список меток" содержит список имен узлов шины, идентифицируемых посредством адреса или идентификатора.

Доступ: PROTOCOL > "Метка"

Метка

Отображение или скрытие метки шины. Метка шины указывается в правой части отображения на сигнале шины, а также в таблице данных шины. Шина и ее метка видны лишь в том случае, если выбрана настройка "Декодировать".

Для ввода текста метки выполните одно из следующих действий:

- Выберите строку из списка библиотек с помощью "Предуст. метка".
- Введите пользовательский текст с помощью "Ред. метки".

Команда дистанционного управления: BUS:LABel:STATe на стр. 517

Предуст. метка

Выбор предварительно заданного текста ярлыка. Можно отредактировать текст с помощью функции "Ред. метки".

Ред. метки

Открытие экранной панели клавиш для ввода текста ярлыка. Если ранее был выбран предварительно заданный ярлык, он уже написан в строке ввода, и его можно изменить.

Максимальная длина имени составляет 8 символов, могут использоваться только ASCII-символы, содержащиеся на экранной панели клавиш.

Команда дистанционного управления: BUS:LABel на стр. 517

12.1.5 Список меток

Для всех протоколов, использующих идентификацию посредством ID или адреса, поддерживается возможность создания списков меток, в которых содержатся адреса или идентификаторы, символьные имена для каждого узла (символьные метки), а также некоторая протокольная информация.

Список меток также может быть использован для запуска по идентификатору или адресу. При этом вместо ввода значения следует выбрать имя, заданное в списке меток.

Файлы со списком меток представлены в формате РТТ.

Список меток зависит от конкретного протокола. Эти файлы рассматриваются в главах, описывающих соответствующие протоколы:

гл. 12.5.5, "Список меток для протокола CAN", на стр. 246

• гл. 12.6.6, "Список меток для протокола LIN", на стр. 259

12.1.5.1 Использование списков меток

Загрузка списка меток и отображение меток

- 1. Сохраните файл со списком меток на флэш-накопителе USB.
- 2. Нажмите клавишу PROTOCOL.
- 3. Задайте настройки протокола.
- 4. В меню "Шина" выберите "Список меток".

Label List	
🞦 Load	
Apply	0
Show Label List	0
Sort	
Alphanumeric	۷
💼 Remove	

- 5. Выберите функцию "Загрузить".
- 6. Перейдите к файлу со списками меток, выберите его и коснитесь "Загрузить".
- 7. Для считывания списка меток коснитесь "Показать список меток".
- Для отображения меток узлов в окне декодированных данных коснитесь "Применить".

Запуск по идентификатору или адресу с использованием метки

Предварительные условия: шина сконфигурирована, функция декодирования включена, декодированный сигнал отображается на экране.

- 1. Откройте меню "Шина".
- 2. Выберите функцию "Запуск".
- 3. Задайте следующие настройки запуска:
 - a) "<Protocol> Trigger" = "Identifier" или "Identifier + Data", или "Address", или "Address and Data".
 - b) Коснитесь "Symbolic ID" (символьный идентификатор).
 - с) Выберите метку. В списке представлены все символьные имена, заданные в загруженном файле.

- 4. Закройте диалоговое окно.
- 5. Выберите режим запуска "Normal" (нормальный).

12.1.5.2 Содержимое и формат РТТ-файла

Списки меток хранятся в виде РТТ-файлов (таблица преобразования протоколов). Файловый формат РТТ представляет собой расширение формата CSV (значения, разделенные запятыми). Для изменения файлов этого формата можно воспользоваться стандартными редакторами, такими как MS Excel или редактор текста.

В РТТ-файле представлено три типа строк:

- Строки комментариев, начинающиеся с символа решетки #. Символ решетки, расположенный в любом другом месте строки, считается обычным символом.
- Командные строки, начинающиеся с символа @. Символ @, расположенный в любом другом месте строки, считается обычным символом.
- Стандартные строки, не являющиеся строками комментариев и командными строками. Эти строки лежат в основе списка меток.

Командные строки

Командные сроки определяют версию РТТ-файла, а также имя протокола:

- @FILE_VERSION: эта строка должна присутствовать в файле строго один раз
- @PROTOCOL_NAME: эта строка должна присутствовать в файле не менее одного раза. Таким образом, в одном файле может содержаться несколько списков меток для различных протоколов.

```
# --- Start of PTT file
@FILE_VERSION = 1.0
@PROTOCOL_NAME = i2c
[... Label list for I2C]
@PROTOCOL_NAME = can
[... Label list for CAN]
# --- End of PTT file
```

Стандартные строки

Стандартные строки определяют содержимое списка меток. Стандартные строки подчиняются правилам, определенным для формата CSV:

- Значения разделяются запятыми
- Символы пробела, следующие за разделителем, игнорируются
- Значения со специальными символами (запятая, новая строка или двойные кавычки) должны быть заключены в двойные кавычки
- Текст в двойных кавычках выделяется символами двойных кавычек.

Формат численного значения указывается индексом. Поддерживаются следующие форматы:

Шина SPI (опция -K1)

Формат	Индекс	Пример		
Decimal (десятичный)	<пустой>	106, DeviceName		
	d	106d, DeviceName		
Hexadecimal (шестнадцатерич-	h	6Ah, DeviceName		
ный)		или префикс : 0х6А , DeviceName		
Octal (восьмеричный)	0	1520, DeviceName		
Binary (двоичный)	b	01101010b, DeviceName		

Максимальный поддерживаемый размер слова для беззнаковых целых чисел равен 64 битам.

```
# --- Start of PTT file
@FILE_VERSION = 1.0
@PROTOCOL NAME = i2c
#
    Following two lines are equal:
7,01h,Temperature
7,01h, Temperature
#
  A comma must be enclosed in double quotes:
7,01h, "Temperature, Pressure, and Volume"
#
    A double quote must also be enclosed in double quotes:
7,7Fh,"Highspeed ""Master"" 01"
#
    Following lines yield the same result:
7d, 0x11, Pressure
7h,11h,Pressure
0x7,17d,Pressure
7,17,Pressure
```

12.2 Шина SPI (опция - K1)

•	Протокол SPI	208
•	Конфигурация шины SPI	.209
•	Запуск SPI	.213
•	Результаты декодирования сигналов шины SPI	216

12.2.1 Протокол SPI

Для полной поддержки протокола SPI требуется четырехканальный прибор или опция MSO -B1.

Последовательный периферийный интерфейс SPI используется для обмена данными с медленными периферийными устройствами, в частности для передачи потоков данных. Основные характеристики протокола SPI:

- Связь в режиме ведущий-ведомый
- Отсутствие адресации устройств: доступ к ведомому осуществляется посредством линии выбора кристалла или линии выбора ведомого устройства.
- Отсутствие механизма подтверждения приема данных
- Поддержка дуплексного режима

Большинство шин SPI имеют четыре линии: две линии данных и две линии управления:

- Линии передачи тактовых сигналов для всех ведомых (SCLK)
- Линия выбора ведомого устройства или линия выбора кристалла (SS или CS)
- Выход данных ведущего, вход данных ведомого (MOSI или SDI)
- Вход данных ведущего, выход данных ведомого (MISO или SDO)

Когда ведущий вырабатывает тактовый импульс и выбирает ведомого, данные могут передаваться в одном из направлений или в обоих направлениях одновременно.

Рис. 12-2: Простое конфигурирование шины SPI

Биты данных сообщения группируются согласно следующему критерию:

- Слово содержит определенное количество последовательных битов. Длина слова задается в конфигурации протокола.
- Кадр содержит определенное количество последовательных слов (не меньше одного полного слова).

Для работы с шинами SPI в приборе R&S RTM3000/RTA4004 представлены следующие возможности запуска:

- По началу кадра
- По концу кадра
- По указанному биту сообщения
- По шаблону данных на указанной позиции

12.2.2 Конфигурация шины SPI

Правильное конфигурирование протокола и задание соответствующих пороговых значений являются условиями успешного декодирования сигнала.

Конфигурирование и декодирование сигнала SPI (с линией CS или без нее)

- 1. Нажмите клавишу PROTOCOL в области Analysis на передней панели.
- 2. Выберите шину, которую необходимо использовать: В1, В2, В3 или В4.

- 3. Выберите "Тип шины" = "SPI (без линии CS)" или "SPI (с линией CS)".
- 4. Выберите функцию "Конфигурация".
- 5. Выберите источники сигнальных линий каналы, к которым подключены эти линии.
- 6. Задайте пороговое значение. Используйте один из следующих методов:
 - Коснитесь функции "Поиск порога". Прибор оценит сигнал и задаст пороговое значение.
 - Введите пороговое значение в числовое поле.
- 7. Задайте остальные параметры сигнала в соответствии с его характеристиками. Все требуемые настройки рассматриваются ниже.
- 8. В меню "Шина" выберите "Декодировать".

Параметры конфигурации шины SPI

Рис. 12-3: Настройка шины SPI (без линии CS)

SPI Setun					2	×
Chip Select	C3	500 mV	High	Low		
Clock	C1	500 mV	Rise	Fall		
MOSI	<mark>C2</mark>	500 mV	High	Low		
MISO	None					
Fin	d Thresl	hold				
Word	l Size	8 Bit	MSB	LSB		

Рис. 12-4: Настройка шины SPI (с линией CS)

Шина SPI (опция - K1)

Выбор чипа	
Такт.	
Перепад	211
MOSI / MISO / Данные	
Полярность	
Порог, Поиск порога	
Размер слова	
Время простоя	

Выбор чипа

Выбор входного канала линии выбора кристалла (CS). Доступно только для шины "SPI (с линией CS)".

Если установлена опция MSO -B1, можно использовать логические каналы в качестве источника.

Komaнда дистанционного управления: BUS:SPI:CS:SOURce на стр. 519

Такт

Выбор входного канала линии передачи тактовых импульсов.

Если установлена опция MSO -B1, можно использовать логические каналы в качестве источника.

Komahda ductahuohhoro ynpabnehus: BUS:SPI:CLOCk:SOURce ha ctp. 519 BUS:SSPI:CLOCk:SOURce ha ctp. 522

Перепад

Выбор фронта тактового импульса, по которому выполняется дискретизация данных: передний или задний. Фронт тактового сигнала отмечает начало нового бита.

Komaндa дистанционного управления: BUS:SPI:CLOCk:POLarity на стр. 520 BUS:SSPI:CLOCk:POLarity на стр. 522

MOSI / MISO / Данные

Выбор входного канала линий данных. Линия MOSI является обязательной, тогда как линия MISO опциональна.

Если установлена опция MSO -B1, можно использовать логические каналы в качестве источника.

Примечание: Линия MISO доступна только на шинах 1 и 3. На шинах 2 и 4 может быть задана только одна линия данных "Data". Линия MISO занимает вторую линию шины. Таким образом, если линия MISO используется на шине 1 или 3, шина 2 или 4, соответственно, недоступна.

Команда дистанционного управления:

```
BUS<b>:SPI:MOSI:SOURce = BUS<b>:SPI:DATA:SOURce Ha ctp. 520
BUS<b>:SPI:MISO:SOURce Ha ctp. 520
BUS<b>:SSPI:MOSI:SOURce = BUS<b>:SSPI:DATA:SOURce Ha ctp. 523
BUS<b>:SSPI:MISO:SOURce Ha ctp. 523
```

Полярность

Выбор активного уровня передаваемого сигнала: высокий (high = 1) или низкий (low = 1).

Для линии CS низкий уровень является активным по умолчанию.

Для линии MOSI/MISO активным по умолчанию является высокий уровень.

Для линий данных активным по умолчанию является высокий уровень.

Команда дистанционного управления:

BUS:SPI:MOSI:POLarity = BUS:SPI:DATA:POLarity Ha ctp. 520
BUS:SPI:MISO:POLarity Ha ctp. 521
BUS:SSPI:MOSI:POLarity = BUS:SSPI:DATA:POLarity Ha ctp. 523
BUS:SSPI:MISO:POLarity Ha ctp. 524

Порог, Поиск порога

Задание порогового значения для канала источника. Введите значение или воспользуйтесь функцией "Поиск порога" для задания порога равным среднему опорному уровню измеренной амплитуды.

Для аналоговых каналов это значение также может быть найдено в меню "По вертикали" > "Канал <n>" > "Порог"

Для логических каналов это значение также может быть найдено в меню "Логич" > "Технология".

Komaнда дистанционного управления: CHANnel<m>: THReshold на стр. 390 CHANnel<m>: THReshold: FINDlevel на стр. 391 DIGital<m>: THReshold на стр. 681

Размер слова

Задание длины слова (или символьного размера), представляющего собой количество бит в сообщении. Максимальная длина слова ограничена 32 битами.

Кроме того, можно задать порядок следования битов, который определяет начальный бит сообщения: "MSB" (старший значащий бит) или "LSB" (младший значащий бит).

Komaндa дистанционного управления: BUS:SPI:SSIZe на стр. 521 BUS:SSPI:SSIZe на стр. 524 BUS:SPI:BORDer на стр. 521 BUS:SSPI:BORDer на стр. 524

Время простоя

Задание времени простоя между пакетами данных, в течение которого линия данных и линия передачи тактовых импульсов находятся в низком состоянии. Доступно только для шины "SPI (без линии CS)".

Новый кадр начинается по истечении времени простоя, в течение которого линия передачи тактовых импульсов находилась в неактивном состоянии. Если временной интервал между словами данных короче времени простоя, слова считаются частью одного кадра.

Команда дистанционного управления: BUS:SSPI:BITime на стр. 524

12.2.3 Запуск SPI

Перед настройкой запуска следует убедиться, что шина сконфигурирована правильно. См. гл. 12.2.2, "Конфигурация шины SPI", на стр. 209.

Запуск по сигналам шины SPI:

- 1. Нажмите клавишу PROTOCOL в области Analysis на передней панели.
- 2. Выберите шину, сконфигурированную для SPI.
- 3. Выберите функцию "Запуск".

Выбор этой функции позволяет выполнить следующие действия:

- Включение функции декодирования (при необходимости).
- Задание типа запуска "Тип запуска" на значение "Serial Bus" и выбор указанной шины в качестве источника запуска.
- Отображение условия "Запуск SPI" в диалоговом окне под настройками протокола.
- 4. Проверка и, при необходимости, изменение источника "Источник".
- 5. В "Запуск SPI" выберите требуемый тип запуска:
 - "Начало кадра": начало сообщения
 - "Конец кадра": конец сообщения
 - "Бит <x>": указанный бит в сообщении
 - "Посл. шаблон": битовый шаблон в сообщении
- 6. Если выбрана функция "Посл. шаблон", диалоговое окно настройки запуска по сигналам шины SPI расширяется для задания шаблона данных.

Настройки запуска по сигналам шины SPI

Настройки запуска показаны в диалоговом окне под конфигурационными параметрами шины. В меню запуска можно выбрать источник запуска и открыть или закрыть диалоговое окно настройки.

Шина SPI (опция -K1)

Рис. 12-5: Меню запуска по сигналам шины SPI

SPI Trigger	Serial Pattern								
Bit Offset	0 Bit								
Number of Bits	26 Bit								
					Х	0	1	2	3
Data	1001	0101	11××	0000		4	5	6	7
	9	5	\$	0		-			
	1111	XXXX	o1xx	XXXX		8	9	A	В
	F	X	\$	Х		С	D	E	F

Рис. 12-6: Настройки запуска по сигналам шины SPI с примером шаблона данных SPI

9	 Шестнадцатеричное значение 1^{го} полубайта с двоичным значением 1001 	
\$ (синий)	= Шестнадцатеричное значение 3 ^{го} полубайта, включающего несколько битов "Х". Син	ий
	цвет указывает на то, что для этого полубайта доступен ввод с клавиатуры.	
Х (белый)	 В Значение 6^{го} полубайта может быть произвольным, поскольку он содержит только би "Х" 	ты
\$ (белый)	= В указанном шаблоне данных длиной 26 битов содержится лишь половина 7 ^{го} полуба	айта
Х (серый)	= В указанном шаблоне данных не содержится 8 ^й полубайт	
Источни	ик	.214
Запуск \$	SPI	. 214
Битовое	е смещение	. 215
Кол-во б	бит	215
Данные		215

Источник

Если для анализа сконфигурированы обе линии (MOSI и MISO), выберите ту, которая будет использоваться в качестве источника запуска.

Команда дистанционного управления: TRIGger:A:SOURce:SPI на стр. 525

Запуск SPI

Выбор условия запуска.

"Начало	Установка запуска на начало сообщения:
кадра"	 Для сигналов SPI с линией CS началом кадра является пере- ход сигнала выбора кристалла CS в активное состояние. Для сигналов SPI без линии CS кадр начинается по истече- нии времени простоя.
"Конец кадра"	Установка запуска на конец сообщения.
	 Для сигналов SPI с линией CS концом кадра является пере- ход сигнала выбора кристалла CS в неактивное состояние. Для сигналов SPI без линии CS кадр заканчивается по исте- чении времени простоя после последнего тактового импульса, если в течение этого времени не появлялся новый тактовый импульс.
"Бит <x>"</x>	Установка запуска на бит, указанный в "Битовое смещение" на стр. 215.
"Посл. шаблон"	Расширение окна настройки запуска для конфигурирования бито- вого шаблона, по которому выполняется запуск. Укажите количе- ство битов "Кол-во бит" на стр. 215 и данные "Данные" на стр. 215 для задания шаблона, а также битовое смещение "Битовое смещение" на стр. 215 для выбора позиции шаблона данных.
Команла листа	нимонного ларавлениа.

Команда дистанционного управления: TRIGger:A:SPI:MODE на стр. 525

Битовое смещение

Указание количества битов перед первым битом шаблона. Эти биты игнорируются. Первым битом после начала кадра является бит с номером 1. Например, если битовое смещение равно 2, биты 1 и 2 игнорируются, и шаблон начинается с бита 3.

Если параметр "Запуск SPI" задан на значение "Бит <x>", запуск выполняется по биту, следующему за битами смещения. Например, если битовое смещение равно 4, прибор будет запущен по началу 5-го бита.

Команда дистанционного управления: TRIGger:A:SPI:POFFset на стр. 527

Кол-во бит

Задание длины шаблона данных в битах.

Примечание: При вводе битов данных, количество которых превышает указанную длину шаблона, значение "Кол-во бит" автоматически изменяется для включения всех заданных битов.

Команда дистанционного управления: TRIGger:A:SPI:PLENgth на стр. 526

Данные

Задание шаблона данных, если параметр "Запуск SPI" задан на значение "Посл. шаблон". При обнаружении указанного шаблона данных прибор устанавливает запуск на первый бит этого шаблона.

Пример описания шаблона показан на рис. 12-6.

Для задания двоичного значения любого бита просто коснитесь его. Для ввода шестнадцатеричного значения коснитесь одного из полубайтов в нижней линии данных.

Если полубайт содержит 1, 2 или 3 бита "Х" (произвольное состояние), значение полубайта представляется символом "\$". Если все 4 бита полубайта находятся в состоянии "Х", полубайт имеет произвольное значение, представляемое символом "Х".

Команда дистанционного управления: TRIGger:A:SPI:PATTern на стр. 526

12.2.4 Результаты декодирования сигналов шины SPI

После завершения конфигурирования последовательной шины можно осуществлять декодирование сигнала:

- 1. В меню "Шина" выберите "Декодировать".
- В меню "Отображ." задайте настройки отображения результата. См. гл. 12.1.2, "Отображение результатов декодирования", на стр. 202.
- В меню "Таблица шины" включите "Таблица шины". Задайте настройки таблицы.

См. также:гл. 12.1.3, "Таблица данных шины: Результаты декодирования", на стр. 203

Прибор захватывает и декодирует сигнал в соответствии с описанием протокола и конфигурационными параметрами.

Цветовое кодирование различных секций протокола и ошибок упрощает интерпретацию визуального отображения. Декодированная информация сжимается или расширяется в зависимости от масштаба по горизонтали. Для отображения результатов доступны различные форматы данных.
```
I<sup>2</sup>C (опция -K1)
```


Рис. 12-7: Декодированный сигнал SPI (без линии CS) с таблицей данных шины Таблица шины. В первом кадре содержится четырнадцать слов, а во втором - восемь слов.

Табл. 1.	2-1: Содержимое	таблицы данных	шины SP
----------	-----------------	----------------	---------

Столбец	Описание
Start Time (время начала)	Время начала кадра относительно точки запуска
Length (длина)	Количество слов в кадре
Data (данные)	Шестнадцатеричные значения слов данных
State (состояние)	Общее состояние кадра

Команды дистанционного управления описаны в гл. 17.11.2.4, "SPI - Decode Results", на стр. 527.

12.3 І²С (опция -К1)

Протокол шины межсоединений интегральных схем является простым узкополосным низкоскоростным протоколом, используемым для обмена данными между бортовыми устройствами, например, в LCD- и LED-драйверах, RAM, EEPROM и др.

I²C (опция -K1)

•	Протокол I ² C	. 218
•	Конфигурация протокола I ² C	.220
•	Запуск по шине I ² С	. 221
•	Результаты декодирования сигналов шины I ² C	. 224
•	Список меток I ² С	226
•	Результаты декодирования сигналов шины I ² C Список меток I ² C	. 224 22

12.3.1 Протокол І²С

В этой главе рассматриваются характеристики протокола, формат данных, типы адресов и возможности запуска. Для получения подробной информации обратитесь к документу "Руководство по эксплуатации и технические характеристики шины I2C", доступному на веб-странице с руководствами NXP по адресу http:// www.nxp.com/.

Характеристики протокола І²С

Основные характеристики протокола I²C:

- Двухпроводная шина: последовательная линия тактирования (SCL) и последовательная линия данных (SDA)
- Связь в режиме ведущий-ведомый: ведущий генерирует тактовые импульсы и адресную информацию для ведомых. Ведомые принимают адресную информацию и тактовые импульсы. Данные могут приниматься и передаваться как ведущим, так и ведомыми.
- Схема адресации: каждое ведомое устройство имеет уникальный адрес.
 Несколько ведомых устройств могут объединяться и адресоваться одним ведущим.
- Бит чтения/записи: определяет режим работы ведущего: считывание (=1) или запись (=0) данных.
- Бит подтверждения: добавляется после каждого байта. Приемник адресной информации или данных отправляет бит подтверждения в передатчик.

Прибор R&S RTM3000/RTA4004 поддерживает работу во всех режимах быстродействия: "High-speed", "Fast mode plus", "Fast mode" и "Standard mode".

Передача данных

Формат простого сообщения (кадра) І²С с 7-битной адресацией содержит следующие части:

- Условие начала: задний фронт на линии SDA при нахождении линии SCL в высоком состоянии
- 7-битный адрес ведомого устройства, по которому проводится запись или чтение
- Бит чтения/записи (R/W): указывает, будут ли данные записываться или считываться из ведомого устройства
- Биты подтверждения (АСК): формируется приемником и подтверждает прием предыдущего байта в случае успешной передачи Исключение: ведущее устройство при чтении завершает передачу данных битом NACK после последнего байта.

- Данные: количество байтов данных с битом АСК после каждого байта
- Условие конца: передний фронт на линии SDA при нахождении линии SCL в высоком состоянии

Рис. 12-8: І2С доступ по записи с 7-битной адресацией

Типы адресов: 7-битный и 10-битный

Для адресации ведомого может использоваться 7- или 10-битный адрес. Для 7 битного адреса требуется один байт: 7 бит для адреса и R/W бит (бит чтения/ записи).

Для 10-битного адреса доступа по записи требуется два байта: первый байт начинается с зарезервированной последовательности 11110, затем следуют два старших значащих бита (MSB) и бит записи. Второй байт содержит оставшиеся 8 младших значащих битов (LSB) адреса. Ведомое устройство подтверждает прием каждого байта адреса.

Рис. 12-9: 10-битный адрес, доступ по записи

При использовании 10-битного адреса для доступа по чтению требуется три байта. Первые два байта идентичны байтам, используемым при записи. Третий байт повторяет биты адреса первого байта и устанавливает бит чтения.

s	SLAVE ADDRESS 1st 7 BITS	R/W A1	SLAVE ADDRESS 2nd BYTE	A2	Sr	SLAVE 1st	ADDRESS 7 BITS	R/W	Α3	DATA	А	
	1 1 1 1 0 X X	0		repe	atec	111	10XX	1				
	reserved MSB	write	LSB		Star	reserv	ed MSB	read				

Рис. 12-10: 10-битный адрес, доступ по чтению

Сигнал запуска

В приборе R&S RTM3000/RTA4004 может использоваться запуск по различным элементам сообщения протокола I²C. Линии данных и тактирования должны быть подключены к входным каналам; запуск по расчетной и опорной осциллограммам невозможен.

Возможен запуск по:

• Условие начала и конца

I²C (опция -K1)

- Повторенное условие начала
- Направление передачи (чтение или запись)
- Байты с пропущенным битом подтверждения
- Заданный адрес ведомого
- Заданный шаблон данных в сообщении

12.3.2 Конфигурация протокола I²C

Правильное конфигурирование протокола и задание соответствующих пороговых значений являются условиями успешного декодирования сигнала.

Настройка и декодирование сигнала I²C

- 1. Нажмите клавишу PROTOCOL в области Analysis на передней панели.
- 2. Выберите шину, которую необходимо использовать: В1, В2, В3 или В4.
- 3. Выберите "Тип шины" = I2C.
- 4. Выберите функцию "Конфигурация".
- 5. Выберите "SCL": канал, к которому подключена линия тактирования.
- 6. Выберите "SDA": канал, к которому подключена линия данных.
- 7. Задайте пороговое значение. Используйте один из следующих способов:
 - Коснитесь функции "Поиск порога". Прибор оценит сигнал и задаст пороговое значение.
 - Введите пороговое значение в числовое поле.
- 8. В меню "Шина" выберите "Декодировать".

Параметры конфигурации протокола I²C

Рис. 12-11: Диалоговое окно настройки протокола I2С

SCL	
SDA	
Порог, Поиск порога	

SCL

Выбор канала источника, к которому подключена линия тактирования.

Если установлена опция MSO -B1, можно использовать логические каналы в качестве источника.

I²C (опция -K1)

Команда дистанционного управления: BUS:I2C:CLOCk:SOURce на стр. 531

SDA

Выбор канала источника, к которому подключена линия данных.

Если установлена опция MSO -B1, можно использовать логические каналы в качестве источника.

Komaнда дистанционного управления: BUS:I2C:DATA:SOURce на стр. 531

Порог, Поиск порога

Задание порогового значения для канала источника. Введите значение или воспользуйтесь функцией "Поиск порога" для задания порога равным среднему опорному уровню измеренной амплитуды.

Для аналоговых каналов это значение также может быть найдено в меню "По вертикали" > "Канал <n>" > "Порог"

Для логических каналов это значение также может быть найдено в меню "Логич" > "Технология".

Команда дистанционного управления: CHANnel<m>: THReshold на стр. 390 CHANnel<m>: THReshold: FINDlevel на стр. 391 DIGital<m>: THReshold на стр. 681

12.3.3 Запуск по шине I²С

Перед настройкой запуска следует убедиться, что шина сконфигурирована правильно. См. гл. 12.3.2, "Конфигурация протокола I²C", на стр. 220.

Запуск по сигналам шины I²C:

- 1. Нажмите клавишу PROTOCOL в области Analysis на передней панели.
- 2. Выберите шину, сконфигурированную для I2С.
- 3. Выберите функцию "Запуск".

Выбор этой функции позволяет выполнить следующие действия:

- Включение функции декодирования (при необходимости).
- Задание типа запуска "Тип запуска" на значение "Serial Bus" и выбор указанной шины в качестве источника запуска.
- Отображение условия запуска в диалоговом окне под настройками протокола.
- 4. В "Запуск I2С" выберите требуемый тип запуска:
 - "Начало": начало сообщения
 - "Конец": конец сообщения
 - "Перезапуск": повторенное условие начала
 - "Нет подтв. (отсутств. подтв.)": передача битов данных не подтверждена

- "Адрес и данные": шаблон адреса и/или до 3 байтов данных
- Если выбрана функция "Идентификатор" или "Идентиф. и данные", диалоговое окно настройки запуска по сигналам шины CAN расширяется для задания шаблона данных.
- Если выбрана функция "Адрес и данные", диалоговое окно настройки запуска по сигналам шины I²C расширяется для задания шаблона данных.

I2C Trigger Address and Data 7 Bit Slave Address Any Address 0x01 Read v v Bin 0000000 Hex 00 0 Byte Offset Number of Bytes 2 3 10100101 0101101x xxxxxxx Bin Data 5\$ ΧХ Α5 Hex

Настройки запуска по сигналам шины I2C

Рис. 12-12: Диалоговое окно настройки запуска для запуска по комбинации адреса и данных

 45 = Шестнадцатеричное значение 1^{го} байта с дя 5\$ = Шестнадцатеричное значение 2^{го} байта, где а 2^й полубайт представлен символом "\$", по извольное состояние) XX (серый) = В заданном шаблоне отсутствует 3^й байт 	зоичным значением 10100101 • 1 ^й полубайт имеет двоичное значение 0101, оскольку в нем содержится один бит "Х" (про-
0	000
Запуск 120	
Адрес ведомого	
Символьный ID	
Data condition (усповие данных)	223
L Байтовое смещение	224
⊾ Кол-во баит	
L Данные: Bin / Hex pattern (двоичный/⊔	естнадцатеричный шаблон)224

Запуск І2С

Выбор условия запуска.

- "Начало" Установка запуска на начало сообщения. Условием начала является задний фронт на линии SDA при нахождении линии SCL в высоком состоянии.
- "Конец" Установка запуска на конец сообщения. Условием конца является передний фронт на линии SDA при нахождении линии SCL в высоком состоянии.

"Перезапуск"	Установка запуска на повторное условие начала - когда условие начала возникает без предшествующего возникновения условия конца. Это возможно в том случае, если ведущий передает несколько сообщений без освобождения шины.
"Нет подтв. (отсутств. подтв.)"	Отсутствие подтверждения запуск прибора происходит, если ведомый не передает бит подтверждения. Бит подтверждения добавляется после каждого байта. Если передача прерывается на интервале бита подтверждения, линия SDA находится в высо- ком состоянии при высоком уровне тактового импульса.
"Адрес и дан- ные"	Установка запуска на шаблон адреса или данных или их комбинацию. См. подразделы "Адрес ведомого" на стр. 223 и "Data condition (условие данных)" на стр. 223.

Команда дистанционного управления: TRIGger:A:I2C:MODE на стр. 532

Адрес ведомого

Задание адреса ведомого, по которому выполняется запуск. Если адрес не имеет значения и запуск должен выполняться только по шаблону данных, включите функцию "Any Address" (произвольный адрес).

Для задания адреса ведомого определите следующие параметры:

- Задайте длину адреса ведомого: "7Bit" или "10Bit".
- Выберите доступ по чтению "Read" или записи "Write" для ведомого в качестве условия запуска. Бит чтения/записи - это 8^й бит первого байта адреса в кадре.
- Задайте адрес ведомого устройства: введите двоичное или шестнадцатеричное значение адреса. Необходимо задать точный адрес, биты "Х" (произвольное состояние) недопустимы.

Команда дистанционного управления:

TRIGger:A:I2C:AMODe Ha CTp. 533 TRIGger:A:I2C:ACCess Ha CTp. 533 TRIGger:A:I2C:ADDRess Ha CTp. 534

Символьный ID

Если в конфигурации шины был загружен и включен список меток с символьными именами, вместо задания адреса можно выбрать символьное имя из списка. При выборе имени в поля адреса добавляются соответствующие значения.

Data condition (условие данных)

Условие данных включает следующие настройки:

- Байтовое смещение (позиция шаблона данных)
- Длина шаблона данных
- Шаблон данных, см. "Bin / Hex pattern (двоичный/шестнадцатеричный шаблон)" на стр. 241

Если данные не имеют значения и запуск должен выполняться только по адресу, задайте все биты данных на значение "Х".

Установка количества байтов смещения, которые будут проигнорированы после байтов адреса. При этом первым значащим байтом является байт, следующий за байтами смещения.

Минимальное смещение составляет 0 байтов, максимальное смещение равно 4095 байтам.

Команда дистанционного управления: TRIGger:A:I2C:POFFset на стр. 535

Кол-во байт - Data condition (условие данных)

Установка количества полных байтов, по которым выполняется запуск. Максимальное количество байтов равно трем.

Примечание: При вводе битов данных, количество которых превышает указанную длину шаблона, значение "Кол-во байт" автоматически изменяется для включения заданных байтов.

Команда дистанционного управления: TRIGger:A:I2C:PLENgth на стр. 534

Данные: Bin / Hex pattern (двоичный/шестнадцатеричный шаблон) ← Data condition (условие данных)

Задание шаблона данных в двоичном или шестнадцатеричном формате. Для задания отдельного двоичного бита или шестнадцатеричного полубайта коснитесь его и введите значение с помощью экранной клавиатуры. Максимальная длина шаблона ограничена 3 байтами.

Команда дистанционного управления: TRIGger:A:I2C:PATTern на стр. 534

12.3.4 Результаты декодирования сигналов шины I²C

После завершения конфигурирования последовательной шины можно осуществлять декодирование сигнала:

- 1. В меню "Шина" выберите "Декодировать".
- В меню "Отображ." задайте настройки отображения результата. См. гл. 12.1.2, "Отображение результатов декодирования", на стр. 202.
- В меню "Таблица шины" включите "Таблица шины". Задайте настройки таблицы.

См. также:гл. 12.1.3, "Таблица данных шины: Результаты декодирования", на стр. 203

Прибор захватывает и декодирует сигнал в соответствии с описанием протокола и конфигурационными параметрами.

Цветовое кодирование различных секций протокола и ошибок упрощает интерпретацию визуального отображения. Декодированная информация сжимается

I²C (опция -K1)

или расширяется в зависимости от масштаба по горизонтали. Для отображения результатов доступны различные форматы данных.

Рис. 12-13: Декодированный сигнал шины CAN с таблицей данных шины; запуск по началу кадра

серые скобки = начало и конец кадра фиолетовый = адрес синий = правильные слова данных зеленый = бит подтверждения, ОК

На приведенном выше рисунке показаны декодированный сигнал шины I2C и таблица данных шины "Таблица шины".

Табл. 12-2: Содержимое таблицы для кадра РС

Столбец	Описание
Start Time (время начала)	Время начала кадра относительно точки запуска
Туре (тип)	Значение бита R/W, доступ по чтению или записи
ID (идентификатор)	Шестнадцатеричное значение адреса
Length (длина)	Количество слов в кадре
Data (данные)	Шестнадцатеричные значения слов данных
State (состояние)	Общее состояние кадра

Команды дистанционного управления описаны в гл. 17.11.3.3, "I²C - Decode Results", на стр. 535.

12.3.5 Список меток I²С

Список меток зависит от конкретного протокола. Списки меток для протокола I²C представлены в форматах CSV и PTT.

В файле с метками I²C содержатся по три значения для каждого адреса:

- Тип адреса, 7-битный или 10-битный
- Знач адреса
- Символьная метка: имя адреса, указывающее его функцию в шинной сети.

Пример: файл I²C формата РТТ

```
# _____
                   _____
@FILE_VERSION = 1.00
@PROTOCOL NAME = i2c
# ------
# Labels for I2C protocol
 Column order: Identifier type, Identifier value, Label
# ______
7,0x1E,Voltage
7,38h,Pressure
7,2Ah,Temperature
7,16h,Speed
7,118,Acceleration
7,07h,HighSpeed_Master_0x3
7,51h,EEPROM
10,3A2h,DeviceSetup
10,1A3h,GatewayStatus
10,06Eh,LeftSensor
# _____
              _____
```

Для получения общей информации о списке меток обратитесь к гл. 12.1.5, "Список меток", на стр. 205.

Label List: I2C (Imported on: 2017-03-30; 16:27)	
Symbolic Label	ID / Addr
Acceleration	0 x 7 6
DeviceSetup	0 x 3 A 2
EEPROM	0 x 5 1
GatewayStatus	0 x 1 A 3
HighSpeed_Master_0x3	0 × 0 7
LeftSensor	0 x 0 6 E
Pressure	0 x 3 8
Speed	0 x 1 6
Temperature	0 x 2 A
Voltage	0 x 1 E

Рис. 12-14: Список меток для протокола I2С

UART / RS232 (опция -K2)

Рис. 12-15: Декодированный сигнал I2С с включенным списком меток и увеличенным вторым кадром

12.4 UART / RS232 (опция -K2)

•	Интерфейс UART / RS232	227
•	Конфигурация протокола UART	.228

- Результаты декодирования сигналов шины UART 234

12.4.1 Интерфейс UART / RS232

Интерфейс UART (Universal Asynchronous Receiver/Transmitter, универсальный асинхронный приемопередатчик) обеспечивает преобразование слов данных в последовательные данные, и наоборот. Он лежит в основе ряда целого ряда последовательных протоколов, таких как RS-232. Интерфейс UART может использовать как всего одну линию, так и две линии для передатчика и приемника.

Передача данных

Данные передаются в виде символов, также называемых словами или знаками. В каждом символе содержится стартовый бит, несколько битов данных, дополнительный бит контроля четности и один или несколько стоповых битов. Несколько символов могут объединяться в пакеты, или кадры. Конец кадра указывается паузой между двумя символами.

UART / RS232 (опция -K2)

Start	Data0	Data1	Data2	Data3	Data4	[Data5]	[Data6]	[Data7]	[Data8]	[Parity]	Stop
-------	-------	-------	-------	-------	-------	---------	---------	---------	---------	----------	------

Рис. 12-16: Порядок следования битов в UART-слове (символе)

- Стартовый бит имеет логическое состояние 0.
- Стоповые биты и биты простоя всегда находятся в логическом состоянии 1.

В протоколе UART отсутствуют тактовые синхроимпульсы. Синхронизация приемника осуществляется посредством стартового и стопового битов, а также битовой скорости, которая должна быть известна на стороне приемника.

Сигнал запуска

Прибор R&S RTM3000/RTA4004 позволяет осуществлять запуск по заданным участкам последовательных сигналов протокола UART:

- Старт бит
- Нач кадра
- Указанный символ
- Ошибки контроля четности, прерывания
- Ошибки кадров
- Шаблон данных в любой или указанной позиции

12.4.2 Конфигурация протокола UART

Правильное конфигурирование протокола и задание соответствующих пороговых значений являются условиями успешного декодирования сигнала.

Настройка и декодирование сигнала UART

- 1. Нажмите клавишу PROTOCOL в области Analysis на передней панели.
- 2. Выберите шину, которую необходимо использовать: В1, В2, В3 или В4.
- 3. Выберите "Тип шины" = UART.
- 4. Выберите функцию "Конфигурация".
- 5. Выберите Прд / Прм / Источник: канал, к которому подключен входной сигнал.
- 6. Задайте пороговое значение. Используйте один из следующих методов:
 - Коснитесь функции "Поиск порога". Прибор оценит сигнал и задаст пороговое значение.
 - Введите пороговое значение в числовое поле.
- Задайте остальные параметры сигнала в соответствии с его характеристиками. Все требуемые настройки рассматриваются ниже.
- 8. В меню "Шина" выберите "Декодировать".

UART Setup × RX C1 500 mV High Low MSB I I LSB ТΧ C2 500 mV Stop Bits Start Bit 🖣 8 Bit Find Threshold Data Size Idle Time Parity None Last Data 833.333 µs 1 Stop Bits ~ Bit Rate Predefined 🗸 9.6 kBit/s 🗸 Frame Start Frame End

Параметры конфигурации протокола UART

Рис. 12-17: Диалоговое окно настройки протокола UART

Прд / Прм / Источник	229
Полярность	229
Порог, Поиск порога	230
Четность	230
Стоповые биты	230
Скорость передачи данных	230
Размер данных	230
Время простоя	231

Прд / Прм / Источник

Выберите входной канал для линий UART. линии приема (RX) и дополнительной линии передачи (TX).

Если установлена опция MSO -B1, можно использовать логические каналы в качестве источника.

Примечание: Линия TX доступна только на шинах 1 и 3. На шинах 2 и 4 может быть задана только одна шина источника "Source". Линия TX занимает вторую линию шины. Таким образом, если линия TX используется на шине 1 или 3, шина 2 или 4, соответственно, недоступна.

Komaнда дистанционного управления: BUS:UART:RX:SOURce = BUS:UART:DATA:SOURce на стр. 542 BUS:UART:TX:SOURce на стр. 542

Полярность

Выбор активного уровня передаваемых данных: высокий (high = 1) или низкий (low = 1). Настройки применяются к обеим линиям.

Высокий активный уровень применяется, например, для управляющих сигналов, тогда как низкий активный уровень используется дли шин данных (RS-232).

Komaнда дистанционного управления: BUS:UART:DATA:POLarity на стр. 543 BUS:UART:POLarity на стр. 543

Порог, Поиск порога

Задание порогового значения для канала источника. Введите значение или воспользуйтесь функцией "Поиск порога" для задания порога равным среднему опорному уровню измеренной амплитуды.

Для аналоговых каналов это значение также может быть найдено в меню "По вертикали" > "Канал <n>" > "Порог"

Для логических каналов это значение также может быть найдено в меню "Логич" > "Технология".

Komaнда дистанционного управления: CHANnel<m>: THReshold на стр. 390 CHANnel<m>: THReshold: FINDlevel на стр. 391 DIGital<m>: THReshold на стр. 681

Четность

Задание дополнительного бита контроля четности, используемого для обнаружения ошибок.

"None" Бит контроля четности не используется.

- "Even" Бит контроля четности равен "1", если количество битов данных, находящихся в состоянии "1", является нечетным. Добавление бита контроля четности обеспечивает четное количество битов в слове данных.
- "Odd" Бит контроля четности равен "1", если количество битов данных, находящихся в состоянии "1", является четным. Добавление бита контроля четности обеспечивает нечетное количество битов в слове данных.

Komaнда дистанционного управления: BUS:UART:PARity на стр. 544

Стоповые биты

Установка количества стоповых битов: 1, 1,5 или 2 стоповых бита.

Команда дистанционного управления: BUS:UART:SBIT на стр. 544

Скорость передачи данных

Установка количества битов, передаваемых в секунду.

- "Predefined" Выбор значения из списка предварительно заданных битовых скоростей в диапазоне от 300 бит/с до 1 Мбит/с.
- "User" Установка конкретного значения битовой скорости в диапазоне от 150 до 39 062 500.

Команда дистанционного управления: BUS:UART:BAUDrate на стр. 544

Размер данных

Установка количества битов данных в слове в диапазоне от 5 до 9 битов.

Команда дистанционного управления: BUS:UART:SSIZe на стр. 543

Время простоя

Установка минимального временного интервала между двумя кадрами (пакетами) данных, т. е. между последним стоповым битом и стартовым битом следующего кадра.

Команда дистанционного управления: BUS:UART:BITime на стр. 544

12.4.3 Запуск по шине UART

Перед настройкой запуска следует убедиться, что шина сконфигурирована правильно. См. гл. 12.4.2, "Конфигурация протокола UART", на стр. 228.

Запуск по сигналам шины UART:

- 1. Нажмите клавишу PROTOCOL в области Analysis на передней панели.
- 2. Выберите шину, сконфигурированную для UART.
- 3. Выберите функцию "Запуск".

Выбор этой функции позволяет выполнить следующие действия:

- Включение функции декодирования (при необходимости).
- Установка для типа запуска "Тип запуска" значения "Serial Bus" (последовательная шина) и выбор указанной шины в качестве источника запуска.
- Отображение условия "Запуск UART" в диалоговом окне под настройками протокола.
- 4. В меню выберите "Источник".
- 5. В "Запуск UART" выберите требуемое условие запуска:
 - "Нач. бит" или "Начало кадра": следующий стартовый бит или первый стартовый бит по истечении времени простоя
 - "Начало кадра"
 - "Ошибка кадра"
 - "Символ <n>": номер кадра в потоке данных
 - "Прервать": стартовый бит, за которым не следует стоповый бит
 - "Ошибка четности"
 - "Шаблон": шаблон данных из 1, 2, 3 или 4 символов на заданной позиции в потоке данных
 - "Любой символ": шаблон битов данных в любом месте потока данных
- Если выбрана функция "Шаблон" или "Любой символ", окно настройки запуска по сигналам шины UART расширяется для задания шаблона данных или символа.

Настройки запуска по сигналам шины UART

55	= Шестнадцатеричное значение 1 ^{го} символа с двоичным значением 01010101			
E6	 Шестнадцатеричное значение 2^{го} символа с двоичным значением 11100110 			
Е (синий)	= Выбранный полубайт во 2м символе. Синий цвет указывает на то, что для этого полу-			
	байта доступен ввод с клавиатуры.			
8\$	= Шестнадцатеричное значение 3 ^{го} символа, где 1 ^й полубайт имеет двоичное значение			
	1000, а 2 ^й полубайт представлен символом "\$", поскольку в нем содержится один бит "Х" (произвольное состояние)			
АХ (серый)	= В заданном шаблоне отсутствует 4 ^й символ			
Источни				
Запуск U	ART			
Симв. см	Симв. смещение			
Кол-во си	имволов			
Данные				
Источни Выбор лі	к инии передатчика или приемника в качестве источника запуска.			
Команда	дистанционного управления:			

TRIGger:A:SOURce:UART Ha CTP. 545

Запуск UART

Выбор условия запуска.

"Нач. бит"	Установка запуска на стартовый бит. Стартовый бит - это первый бит с логическим состоянием 0, следующий за стоповым битом.
"Начало кадра"	Установка запуска на начало кадра. Начало кадра - это первый стартовый бит по истечении времени простоя.
"Ошибка кадра"	Прибор запускается при возникновении ошибки кадра.
"Символ <n>"</n>	Установка запуска на указанный символ (n-е слово) в кадре (пакете). Задайте значение "Симв. смещение" на стр. 233.

"Прервать"	Запуск выполняется, если за стартовым битом не следует стопо- вый бит: линия данных находится в логическом состоянии 0 на протяжении временного интервала, превышающего длину слова UART.
"Ошибка чет- ности"	Запуск по ошибке контроля четности, указывающей на ошибку передачи.
"Шаблон"	Запуск по шаблону данных на указанной позиции. Настройка шаблона данных включает задание значений "Симв. смещение" на стр. 233, "Кол-во символов" на стр. 233 и "Дан- ные" на стр. 233.
"Любой сим- вол"	Запуск по шаблону данных, появляющемуся в рамках одного символа на любой позиции кадра. См. "Данные" на стр. 233.

Команда дистанционного управления: TRIGger:A:UART:MODE на стр. 545

Симв. смещение

Установка количества символов, которые будут проигнорированы перед началом шаблона данных после байта адреса. При этом первым значащим байтом является байт, следующий за байтами смещения.

Минимальное смещение составляет 0 символов, максимальное смещение равно 4095 символам.

Komaнда дистанционного управления: TRIGger:A:UART: POFFset на стр. 547

Кол-во символов

Установка количества символов (полных байтов), по которым выполняется запуск. Минимальное количество символов равно 1, максимальное количество символов равно 4.

Примечание: При вводе битов данных, количество которых превышает указанную длину шаблона, значение "Кол-во байт" автоматически изменяется для включения всех заданных байтов.

Komaндa дистанционного управления: TRIGger:A:UART: PLENgth на стр. 546

Данные

Задание шаблона данных, если параметр "Запуск UART" задан на значение "Шаблон" или "Любой символ".

Пример описания шаблона показан на рис. 12-18.

Для задания двоичного значения любого бита просто коснитесь его. Для ввода шестнадцатеричного значения коснитесь одного из полубайтов в нижней линии данных.

Если полубайт содержит 1, 2 или 3 бита "Х" (произвольное состояние), значение полубайта представляется символом "\$". Если все 4 бита полубайта находятся в состоянии "Х", полубайт имеет произвольное значение, представляемое символом "Х".

UART / RS232 (опция -K2)

Команда дистанционного управления: TRIGger:A:UART: PATTern на стр. 546

12.4.4 Результаты декодирования сигналов шины UART

После завершения конфигурирования последовательной шины можно осуществлять декодирование сигнала:

- 1. В меню "Шина" выберите "Декодировать".
- В меню "Отображ." задайте настройки отображения результата. См. гл. 12.1.2, "Отображение результатов декодирования", на стр. 202.
- В меню "Таблица шины" включите "Таблица шины". Задайте настройки таблицы.

См. также:гл. 12.1.3, "Таблица данных шины: Результаты декодирования", на стр. 203

Прибор захватывает и декодирует сигнал в соответствии с описанием протокола и конфигурационными параметрами.

Цветовое кодирование различных секций протокола и ошибок упрощает интерпретацию визуального отображения. Декодированная информация сжимается или расширяется в зависимости от масштаба по горизонтали. Для отображения результатов доступны различные форматы данных.

Рис. 12-19: Декодированный сигнал шины UART

На приведенном выше рисунке показаны шесть кадров сигнала шины UART и таблица данных шины "Таблица шины".

Табл. 12-3: Содержимое таблицы для кадра UART

Столбец	Описание
Start Time (время начала)	Время начала кадра относительно точки запуска
Data (данные)	Шестнадцатеричные значения слов данных
State (состояние)	Общее состояние кадра

Команды дистанционного управления описаны в гл. 17.11.4.3, "UART - Decode Results", на стр. 547.

12.5 Шина САN (опция -K3)

CAN (Controller Area Network, сеть контроллера) - это шинная система, разработанная компанией Bosch и используемая в автомобильной сетевой архитектуре, например, для управления тормозной системой, трансмиссией и двигателем. В наши дни она также нашла свое применение в целом ряде отраслей, таких как производственные установки, авиакосмическая промышленность, подводные системы, торговый флот и т.д.

•	Конфигурация шины САМ	.235
•	Запуск по сигналам шины САМ	237
•	Результаты декодирования сигналов шины САМ	.242
•	Поиск по декодированным данным шины САХ	243
•	Список меток для протокола САN	246
-		

12.5.1 Конфигурация шины CAN

Правильное конфигурирование протокола и задание соответствующих пороговых значений являются условиями успешного декодирования сигнала.

Настройка и декодирование сигнала шины CAN

- 1. Нажмите клавишу PROTOCOL в области Analysis на передней панели.
- 2. Выберите шину, которую необходимо использовать: В1, В2, В3 или В4.
- 3. Выберите "Тип шины" = CAN.
- 4. Выберите функцию "Конфигурация".
- 5. Выберите "Источник": канал, к которому подключен входной сигнал.
- 6. Задайте пороговое значение. Используйте один из следующих методов:
 - Коснитесь функции "Поиск порога". Прибор оценит сигнал и установит пороговое значение.
 - Введите пороговое значение в числовое поле.

- Задайте остальные параметры сигнала в соответствии с его характеристиками. Все требуемые настройки рассматриваются ниже.
- 8. В меню "Шина" выберите "Декодировать".

Параметры конфигурации шины САМ

Источник	
Порог, Поиск порога	
Тип	
Скорость передачи данных	
Точка отсчета	

Источник

Установка источника линии данных. Могут быть использованы все канальные осциллограммы.

Если установлена опция MSO -B1, можно использовать логические каналы в качестве источника.

Komaнда дистанционного управления: BUS:CAN:DATA:SOURce на стр. 552

Порог, Поиск порога

Задание порогового значения для канала источника. Введите значение или воспользуйтесь функцией "Поиск порога" для задания порога равным среднему опорному уровню измеренной амплитуды.

Для аналоговых каналов это значение также может быть найдено в меню "По вертикали" > "Канал <n>" > "Порог"

Для логических каналов это значение также может быть найдено в меню "Логич" > "Технология".

Komaнда дистанционного управления: CHANnel<m>: THReshold на стр. 390 CHANnel<m>: THReshold: FINDlevel на стр. 391 DIGital<m>: THReshold на стр. 681

Тип

Выбор линии CAN-High или CAN-Low. При работе с шиной CAN обе линии используются для передачи дифференциального сигнала.

При измерении с помощью дифференциального пробника его подключают к обеим линиям CAN-H и CAN-L, выбирая тип данных "High".

При использовании несимметричного пробника его подключают либо к линии CAN_L, либо к линии CAN_H, выбирая тип данных "High" или "Low", соответственно.

Команда дистанционного управления: BUS:CAN:TYPE на стр. 552

Скорость передачи данных

Установка количества битов, передаваемых в секунду. Максимальная битовая скорость для линии High Speed CAN составляет 1 Мбит/с. Битовая скорость является постоянной и фиксированной для данной шины CAN.

"Predefined" Для выбора битовой скорости из списка предустановленных значений задайте параметр "Bit rate" (битовая скорость) на значение "Predefined" (предустановлена) и выберите значение из списка.

"User" Для задания другого значения задайте параметр "Bit rate" (битовая скорость) на значение "User" (пользовательская) и введите значение скорости в бит/с.

Команда дистанционного управления: BUS:CAN:BITRate на стр. 553

Точка отсчета

Установка позиции выборочной точки в бите в процентах от номинального битового времени. Выборочная точка делит номинальный битовый период на два различных временных сегмента, которые используются для повторной синхронизации тактового сигнала.

В интерфейсе шины CAN используется схема асинхронной передачи. Стандартом определен ряд правил для повторной синхронизации тактового сигнала узла CAN с сообщением.

Komaнда дистанционного управления: BUS:CAN:SAMPlepoint на стр. 553

12.5.2 Запуск по сигналам шины CAN

Перед настройкой запуска следует убедиться, что шина сконфигурирована правильно. См. гл. 12.5.1, "Конфигурация шины CAN", на стр. 235.

Запуск по сигналам шины CAN:

- 1. Нажмите клавишу PROTOCOL в области Analysis на передней панели.
- 2. Выберите шину, сконфигурированную для CAN.

3. Выберите функцию "Запуск".

Выбор этой функции позволяет выполнить следующие действия:

- Включение функции декодирования (при необходимости).
- Установка для типа запуска "Тип запуска" значения "Serial Bus" (последовательная шина) и выбор указанной шины в качестве источника запуска.
- Отображение условия "Запуск CAN" в диалоговом окне под настройками протокола.
- 4. В "Запуск CAN" выберите требуемый тип запуска:
 - "Начало кадра": первый фронт бита синхронизации
 - "Конец кадра": номер кадра в потоке данных
 - "Кадр": ошибка, перегрузка, данные или кадр удаленного запроса
 - "Ошибка": бит заполнения, формат, подтверждение, CRC (контрольная сумма)
 - "Идентификатор": специальный идентификатор сообщения или диапазон идентификаторов
 - "Идентиф. и данные": комбинация идентификатора и условия данных
- Если выбрана функция "Идентификатор" или "Идентиф. и данные", диалоговое окно настройки запуска по сигналам шины CAN расширяется для задания шаблона данных.

Настройки	запуска по	сигналам	шины	CAN
11001001001	ourry onder no	or it i four fourth		•

CAN Trigger	Identifier and Data	✓ Frame Typ	e Remote	•						
ID Type	29Bit 🗸	Compar	e Greater Than	•						
ldentifier Bin	o1oo1 o	1011000 0	1011000	001	111111					
Hex	0958583	F								
						v	•	1	•	2
Data	6 Byte	Compar	e Equal	•		X	U		2	3
Bin	xxxx111	1 0000111	1 xxxx1	111	000011	11	4	5	6	7
Hex	XF	٥F	XF		0 F		8	9	A	В
Bin	xxxx111	1 0000111	1 xxxx1	111	000011	11	с	D	E	F
Hex	XF	0 F	XF		0 F					

"Запуск CAN" "Идентификатор"	 запуск по "Идентиф. и данные" запуск по 29-битным идентификаторам, значение которых превышает значение заданного идентификатора
"Данные" 0 (синий)	 запуск по заданному 6-байтному шаблону данных Выбранный полубайт во 2^мбайте шаблона данных, где синий цвет указывает на то, что для этого полубайта доступен ввод с клавиатуры
Запуск САN Выбор режима	а запуска.

"Начало	Запуск по первому фронту доминантного бита SOF (бит синхро-
кадра"	низации).
"Конец кадра"	Запуск по концу кадра (7 рецессивных битов).

"Кадр"	Запуск по кадру, тип которого выбран в "Кадр" См.: "Кадр" на стр. 239.
"Ошибка"	Запуск по ошибке кадра. Ошибка кадра передается узлом, обнаружившим ошибку. См.: "Ошибка" на стр. 240.
"Идентифика- тор"	Запуск по специальному идентификатору сообщения или диапа- зону идентификаторов. Если в конфигурации шины был загружен и включен список меток с именами узлов, вместо ввода числового идентификатора может быть выбран простой символьный идентификатор "Symbolic ID". См.: "Условие идентификатора" на стр. 240.
"Идентиф. и данные"	Запуск по комбинации условий идентификатора и данных. Запуск прибора осуществляется по концу последнего байта заданного шаблона данных. См.: "Условие идентификатора" на стр. 240 и "Data condition (условие данных)" на стр. 241.
14	

Команда дистанционного управления: TRIGger:A:CAN:TYPE на стр. 553

Кадр

Выбор типа кадра, по которому выполняется запуск.

"Данные"	Кадр для передачи данных. При этом также учитывается формат идентификатора ("Тип ID").
"Дистан- ционно"	Кадр удаленного запроса инициирует передачу данных другим узлом. Формат кадра совпадает с форматом кадров данных, но не содержит поля данных. При этом также учитывается формат идентификатора ("Тип ID").
"Данные или дистанц."	Запуск по кадрам удаленного запроса и кадрам данных. При этом также учитывается формат идентификатора ("Тип ID").
"Ошибка"	Запуск по любому кадру с ошибками.
"Перегрузка"	Кадр перегрузки передается узлом, для которого требуется наличие задержки между кадрами данных и/или кадрами удаленного запроса.

Команда дистанционного управления: TRIGger:A:CAN:FTYPe на стр. 554

Тип ID

Выбор длины идентификатора: 11 битов для базовых кадров CAN или 29 битов для расширенных кадров CAN. Выберите "Any", если тип идентификатора не имеет значения.

Команда дистанционного управления: TRIGger:A:CAN:ITYPe на стр. 554

Ошибка

Идентификация различных ошибок в кадре. В качестве условия запуска может быть выбран один или несколько типов ошибок.

Команда дистанционного управления: TRIGger:A:CAN:TYPE на стр. 553

Бит заполн. - Ошибка

Следующие сегменты кадров кодируются по методу заполнения битами:

- Начало кадра
- Поле арбитража
- Поле управления
- Поле данных
- CRC-последовательность

Передатчик автоматически вставляет комплементарные биты в битовый поток, если в передаваемом потоке обнаруживается пять последовательных битов с одинаковым значением. Ошибка заполнения возникает, если в указанных полях обнаруживается 6^й последовательный бит с таким же значением.

Komaнда дистанционного управления: TRIGger:A:CAN:BITSterror на стр. 556

Форм. - Ошибка

Ошибка формата возникает, если поле с фиксированным форматом содержит один или несколько недопустимых битов.

Команда дистанционного управления: TRIGger:A:CAN:FORMerror на стр. 557

Подтверждение - Ошибка

Ошибка подтверждения возникает, если передатчик не принимает бит подтверждения – доминантный бит в слоте подтверждения "Ack".

Команда дистанционного управления: TRIGger:A:CAN:ACKerror на стр. 556

CRC ← Ошибка

В протоколе CAN используется циклический контроль по избыточности (Cyclic Redundancy Check, CRC), который представляет собой сложный алгоритм вычисления контрольной суммы. Передатчик вычисляет значение CRC и передает результат в CRC-последовательности. Приемник вычисляет CRC аналогичным образом. Ошибка CRC возникает, если вычисленный результат отличается от принятого значения в CRC-последовательности.

Команда дистанционного управления: TRIGger:A:CAN:CRCerror на стр. 556

Условие идентификатора

Условие идентификатора включает следующие параметры:

- Тип ID
- Сравнение
- Значение идентификатора

Сравнить - Условие идентификатора

Установка условия сравнения идентификатора: Если в шаблоне идентификатора содержится по крайней мере один бит X (произвольное состояние), запуск может осуществляться по значениям как равным, так и не равным заданному. Если в шаблоне содержатся только 0 и 1, запуск возможен также по диапазону значений, которые больше или меньше заданного.

Команда дистанционного управления: TRIGger:A:CAN:ICONdition на стр. 555

Bin / Hex pattern (двоичный/шестнадцатеричный шаблон) ← Условие идентификатора

Задание шаблона идентификатора или данных в двоичном или шестнадцатеричном формате. Для задания отдельного двоичного бита или шестнадцатеричного полубайта коснитесь его и введите значение с помощью экранной клавиатуры.

- "Bin" В строке содержится двоичный шаблон, максимальное количество битов в котором равно 64. Допустимыми являются символы 0, 1 и X.
- "Hex" В строке содержится шестнадцатеричный шаблон, максимальное количество байтов в котором равно 8. Допустимыми являются символы 0-F и X.

Команда дистанционного управления:

TRIGger:A:CAN:IDENtifier Ha ctp. 555 TRIGger:A:CAN:DATA Ha ctp. 556

Символьный ID - Условие идентификатора

Если в конфигурации шины был загружен и включен список меток с символьными именами, вместо ввода числового идентификатора можно выбрать символьное имя из списка. Запуск прибора осуществляется по идентификатору выбранного узла.

Data condition (условие данных)

Условие данных включает следующие настройки:

- Длина шаблона данных
- Сравнение
- Шаблон данных, см. "Bin / Hex pattern (двоичный/шестнадцатеричный шаблон)" на стр. 241

Данные ← Data condition (условие данных)

Задание длины шаблона данных - количества байтов в шаблоне.

Команда дистанционного управления: TRIGger:A:CAN:DLC на стр. 555

Установка условия сравнения данных. Если в шаблоне содержится по крайней мере один бит X (произвольное состояние), запуск может осуществляться по значениям как равным, так и не равным заданному. Если в шаблоне содержатся только 0 и 1, запуск возможен также по диапазону значений, которые больше или меньше заданного.

Команда дистанционного управления: TRIGger:A:CAN:DCONdition на стр. 555

12.5.3 Результаты декодирования сигналов шины CAN

После завершения конфигурирования последовательной шины можно осуществлять декодирование сигнала:

- 1. В меню "Шина" выберите "Декодировать".
- В меню "Отображ." задайте настройки отображения результата. См. гл. 12.1.2, "Отображение результатов декодирования", на стр. 202.
- 3. В меню "Таблица шины" включите "Таблица шины". Задайте настройки таблицы.

См. также:гл. 12.1.3, "Таблица данных шины: Результаты декодирования", на стр. 203

Прибор захватывает и декодирует сигнал в соответствии с описанием протокола и конфигурационными параметрами.

Цветовое кодирование различных секций протокола и ошибок упрощает интерпретацию визуального отображения. Декодированная информация сжимается или расширяется в зависимости от масштаба по горизонтали. Для отображения результатов доступны различные форматы данных.

Рис. 12-21: Декодированный сигнал шины CAN с таблицей данных шины; запуск по началу кадра

фиолетовый = идентификатор

серый = DLC, код длины данных

синий = слова данных

красный = ошибка, кадр с ошибкой

На приведенном выше рисунке показаны декодированный сигнал шины CAN и таблица данных шины "Таблица шины".

Табл. 12-4: Содержимое таблицы для кадра CAN

Столбец	Описание
Time Diff. (разность времени)	Время начала кадра относительно точки запуска
Туре (тип)	Тип кадра: кадр данных, удаленного запроса, ошибки или перегрузки
ID (идентификатор)	Значение идентификатора, шестнадцатеричное значение
DLC	Код длины данных, количество байтов данных
Data (данные)	Шестнадцатеричные значения байтов данных
CRC	Шестнадцатеричное значение циклического контроля по избыточности (контрольная сумма)
State (состояние)	Общее состояние кадра.

Команды дистанционного управления описаны в гл. 17.11.5.3, "CAN - Decode Results", на стр. 557.

12.5.4 Поиск по декодированным данным шины CAN

С помощью функции поиска можно обнаруживать одинаковые события в декодированных данных, по которым также может осуществляться запуск. В отличие от функции запуска, функция поиска позволяет обнаруживать все события в выборке, удовлетворяющие условию запуска. Результаты отображаются в таблице и могут быть сохранены в файл.

Шина CAN (опция -K3)

Рис. 12-22: Поиск кадров данных с 29-битным идентификатором по данным шины CAN

Поиск событий по сигналам шины CAN

- 1. Правильно сконфигурируйте и декодируйте данные шины.
- 2. Выполните сбор декодированных данных.
- 3. Нажмите клавишу Search.
- 4. Выберите "Тип поиска" = "Protocol".
- 5. Выберите источник "Источник": шина, сконфигурированная для протокола CAN.
- 6. Выберите событие "Событие", поиск которого будет выполнен.
- 7. Введите дополнительные настройки в зависимости от выбранного события.

Настройки поиска по сигналам шины САМ

Рис. 12-23: Настройки поиска кадров данных с идентификатором 567 (hex), в которых имеется ошибка, по сигналам шины CAN

Событие

Установка события или комбинации событий, поиск которых будет выполнен. Например, может быть выполнен поиск кадров, ошибок, данных или идентификаторов (ID). В зависимости от выбранного события отображаются дополнительные настройки.

Komaнда дистанционного управления: SEARch: PROTocol: CAN: CONDition на стр. 563

Настр. кадра

Выбор типа кадра, поиск которого будет выполнен.

Если выполняется поиск кадров удаленного запроса или данных, в поиске также учитывается тип идентификатора (длина). Эта настройка доступна, только если выбрано событие "Событие" = "Кадр".

Komaнда дистанционного управления: SEARch: PROTocol: CAN: FRAMe на стр. 564

Ошибка

Выбор типа ошибки для поиска. Можно выбрать один или несколько типов ошибок в качестве условия поиска. Типы ошибок идентичны тем, которые могут быть заданы в настройках запуска по сигналам шины CAN, см. гл. 12.5.2, "Запуск по сигналам шины CAN", на стр. 237.

Эта настройка доступна, только если выбрано событие "Событие" = "Ошибка" или "Error & ID".

Команда дистанционного управления:

SEARch: PROTocol: CAN: ACKerror Ha CTp. 565 SEARch: PROTocol: CAN: BITSterror Ha CTp. 565 SEARch: PROTocol: CAN: CRCerror Ha CTp. 565 SEARch: PROTocol: CAN: FORMerror Ha CTp. 565

Тип кадра

Выбор типа кадра, поиск которого будет выполнен, если выбрано событие "Событие" = "Идентификатор". Поиск может выполняться по кадрам данных и/или кадрам удаленного запроса.

Komaнда дистанционного управления: SEARch: PROTocol:CAN: FTYPe на стр. 566

Условие идентификатора

Настройки для задания шаблона идентификатора, если выбрано событие "Событие" = "Идентификатор" или "ID и ошибка", или "ID и данные".

После задания типа идентификатора "Тип ID" и условия "Сравнить" можно ввести значение идентификатора, установив каждый отдельный бит в высокое, низкое или произвольное (Х) состояние. Кроме того, можно ввести шестнадцатеричное значение для каждого полубайта. Настройки идентичны тем, которые представлены для запуска по идентификатору, см. также "Условие идентификатора" на стр. 240.

Если в конфигурации шины был загружен и включен список меток с именами узлов, вместо ввода числового идентификатора можно выбрать имя узла из списка. Запуск прибора осуществляется по идентификатору выбранного узла.

Команда дистанционного управления:

SEARch: PROTocol: CAN: ITYPe Ha ctp. 566 SEARch: PROTocol: CAN: ICONdition Ha ctp. 566 SEARch: PROTocol: CAN: IDENtifier Ha ctp. 566

Data condition (условие данных)

Настройки для задания шаблона данных, поиск которого будет выполнен, если выбрано событие "Событие" = "ID и ошибка".

После задания длины данных "Данные" и условия "Сравнить" можно ввести значение данных, установив каждый отдельный бит в высокое, низкое или произвольное (Х) состояние. Кроме того, можно ввести шестнадцатеричное значение для каждого полубайта. Настройки идентичны тем, которые представлены для запуска по данным, см. также "Data condition (условие данных)" на стр. 241.

Komahda дистанционного управления: SEARch: PROTocol: CAN: DLENgth на стр. 566 SEARch: PROTocol: CAN: DCONdition на стр. 567 SEARch: PROTocol: CAN: DATA на стр. 567

12.5.5 Список меток для протокола CAN

Для получения общей информации о списках меток и запуске по символьным идентификаторам см. гл. 12.1.5, "Список меток", на стр. 205.

Содержимое файлов со списками меток зависит от протокола. В файле с метками РТТ для протокола CAN содержится по три значения для каждого идентификатора:

- Тип идентификатора: 11-битный или 29-битный
- Значение идентификатора
- Метка: символьное имя идентификатора, указывающее его функцию в шинной сети.

Пример: РТТ-файл для протокола CAN

```
# _____
@FILE_VERSION = 1.00
@PROTOCOL NAME = can
# Labels for CAN protocol
 Column order: Identifier type, Identifier value, Label
#
# _____
11,064h,Diag_Response
11,1E5h,EngineData
11,0A2h,Ignition_Info
11,1BCh,TP Console
11,333h,ABSdata
11,313h,Door_Left
11,314h,Door Right
29,01A54321h,Throttle
29,13A00FA2h,LightState
29,0630ABCDh,Engine Status
29,03B1C002h,Airbag_Status
29,01234ABCh,NM Gateway
# ______
```

Label List: CAN (Imported on: 2017-03-30; 15:10)	
Symbolic Label	ID / Addr
ABSdata	0 x 3 3 3
Airbag_Status	0 x 0 3 B 1 C 0 0 2
Diag_Response	0 x 0 6 4
Door_Left	0 x 3 1 3
Door_Right	0 x 3 1 4
Engine_Status	0×0630 ABCD
EngineData	0 x 1 E 5
lgnition_lnfo	0 x 0 A 2
LightState	0 x 1 3 A 0 0 F A 2
NM_Gateway	0 x 0 1 2 3 4 ABC
Throttle	0 x 0 1 A 5 4 3 2 1

Рис. 12-24: Список меток для протокола CAN

Шина LIN (опция -K3)

Рис. 12-25: Декодированный сигнал CAN с таблицей данных шины и включенным списком меток

12.6 Шина LIN (опция -K3)

LIN (Local Interconnect Network, локальная коммутируемая сеть) - это простая недорогостоящая шинная система, используемая в автомобильной сетевой архитектуре. Как правило, LIN является подсетью шины САN. Основное назначение сети LIN заключается в интеграции некритических датчиков и воздействующих устройств с низкими требованиями по пропускной способности. Типовой областью применения в автомобильной промышленности является управление дверями, окнами, зеркалами заднего вида и дворниками.

•	Протокол LIN	248
•	Конфигурация шины LIN	250
•	Запуск по сигналам шины LIN	252
•	Результаты декодирования сигналов шины LIN	256
•	Поиск по декодированным данным шины LIN	257
•	Список меток для протокола LIN	259

12.6.1 Протокол LIN

В этой главе рассматриваются характеристики протокола, формат кадра, идентификаторы и возможности запуска. Для получения дополнительной информации можно бесплатно запросить технические характеристики протокола LIN на сайте http://www.lin-subbus.org/.

Характеристики протокола LIN

Основные характеристики протокола LIN:

- Протокол однопроводной последовательной передачи данных, основанный на интерфейсе байт-слово UART
- Один ведущий, несколько ведомых как правило, до 12 узлов
- Обмен данными под управлением ведущего: ведущий согласовывает обмен данными с временными интервалами протокола LIN и передает идентификатор в ведомые устройства
- Механизм синхронизации для восстановления тактовой частоты ведомыми узлами без использования кварцевого или пьезокерамического резонатора

Прибор R&S RTM3000/RTA4004 поддерживает несколько версий стандарта LIN: v1.3, v2.0, v2.1 и американскую версию SAE J2602.

Передача данных

Основной принцип обмена данными по протоколу LIN:

- Обмен данными в активной сети LIN всегда инициируется ведущим.
- Ведущий передает заголовок сообщения, включающий биты прерывания синхронизации, байт синхронизации и идентификатор сообщения.
- Идентифицированный узел передает ответное сообщение: от одного до восьми байтов данных и один байт контрольной суммы.
- Заголовок и ответ формируют кадр сообщения.

Данные передаются в байтах с использованием интерфейса байт-слово UART без бита контроля четности. В каждом байте содержатся стартовый бит, 8 битов данных и стоповый бит.

Start bit	Bit 0 LSB	Bit 1						Bit 7 MSB	Stop bit
Byte field									

Рис. 12-26: Структура поля байта

Байты данных передаются, начиная с младшего значащего бита (LSB).

В байте идентификатора содержатся 6 битов идентификатора кадра и два бита контроля четности. Такая комбинация называется защищенным идентификатором.

Сигнал запуска

Прибор R&S RTM3000/RTA4004 поддерживает возможность запуска по различным участкам кадров LIN. Линия данных должна быть подключена к входному каналу; запуск по расчетной и опорной осциллограммам невозможен.

Возможен запуск по следующим участкам:

- Начало кадра (поле синхронизации)
- Специальный идентификатор ведомого или диапазон идентификаторов

- Шаблон данных в сообщении
- Сигнал пробуждения
- Ошибка контрольной суммы (ошибка в данных), ошибка контроля четности (ошибка в идентификаторе)

12.6.2 Конфигурация шины LIN

Правильное конфигурирование протокола и задание соответствующих пороговых значений являются условиями успешного декодирования сигнала.

Настройка и декодирование сигнала шины LIN

- 1. Нажмите клавишу PROTOCOL в области Analysis на передней панели.
- 2. Выберите шину, которую необходимо использовать: В1, В2, В3 или В4.
- 3. Выберите "Тип шины" = LIN.
- 4. Выберите функцию "Конфигурация".
- 5. Выберите "Источник": канал, к которому подключен входной сигнал.
- 6. Задайте пороговое значение:
 - Коснитесь функции "Поиск порога". Прибор оценит сигнал и установит пороговое значение.
 - Введите пороговое значение в числовое поле.
- 7. Задайте остальные параметры сигнала в соответствии с его характеристиками. Все требуемые настройки рассматриваются ниже.
- 8. В меню "Шина" выберите "Декодировать".

Параметры конфигурации шины LIN

LIN											
				h	dle						
S	ource	<mark>C1</mark>	500 m	IV High	Low						
						Break	Sync.	D	Data	Checksum	
	Find	Threshold	<u>*-</u> /								
Ve	ersion	Version 1x	•								
Bit	t Rate	User	•	9.6 kBit/s							

Рис. 12-27: Диалоговое окно настройки шины LIN

Источник	
Простой	251
Порог, Поиск порога	
Версия	
Скорость передачи данных	251

Источник

Установка источника линии данных. Могут быть использованы все канальные осциллограммы.

Если установлена опция MSO -B1, можно использовать логические каналы в качестве источника.

Komaнда дистанционного управления: BUS:LIN:DATA:SOURce на стр. 568

Простой

Определение состояния незанятости шины. Состояние незанятости является рецессивным и соответствует логической 1.

Команда дистанционного управления: BUS:LIN:POLarity на стр. 568

Порог, Поиск порога

Задание порогового значения для канала источника. Введите значение или воспользуйтесь функцией "Поиск порога" для задания порога равным среднему опорному уровню измеренной амплитуды.

Для аналоговых каналов это значение также может быть найдено в меню "По вертикали" > "Канал <n>" > "Порог"

Для логических каналов это значение также может быть найдено в меню "Логич" > "Технология".

Команда дистанционного управления: CHANnel<m>: THReshold на стр. 390 CHANnel<m>: THReshold: FINDlevel на стр. 391 DIGital<m>: THReshold на стр. 681

Версия

Выбор версии стандарта LIN, используемой в ИУ. Эта настройка главным образом определяет версию контрольной суммы, используемой при декодировании.

Самой распространенной версией является LIN 2.х. Для смешанных сетей или при неизвестном стандарте установите LIN на значение "Any" (произвольное).

Komaнда дистанционного управления: BUS:LIN:STANdard на стр. 568

Скорость передачи данных

Установка количества битов, передаваемых в секунду. Стандарт LIN определяет максимальную битовую скорость 20 кбит/с.

- "Predefined" Для выбора битовой скорости из списка предустановленных значений установите для параметра "Скорость передачи данных" значение "Predefined" и выберите значение из списка.
- "User" Для установки другого значения задайте для параметра "Скорость передачи данных" значение "User" и введите значение в бит/с.

Komaнда дистанционного управления: BUS:LIN:BITRate на стр. 568

12.6.3 Запуск по сигналам шины LIN

Перед настройкой запуска следует убедиться, что шина сконфигурирована правильно. См. гл. 12.6.2, "Конфигурация шины LIN", на стр. 250.

Запуск по сигналам шины LIN:

- 1. Нажмите клавишу PROTOCOL в области Analysis на передней панели.
- 2. Выберите шину, сконфигурированную для LIN.
- 3. Выберите функцию "Запуск".

Выбор этой функции позволяет выполнить следующие действия:

- Включение функции декодирования (при необходимости).
- Установка для типа запуска "Тип запуска" значения "Serial Bus" (последовательная шина) и выбор указанной шины в качестве источника запуска.
- Отображение условия "Запуск LIN" в диалоговом окне под настройками протокола.
- 4. В "Запуск LIN" выберите требуемый тип запуска:
 - "Начало кадра": стоповый бит поля синхронизации
 - "Пробужд.": после кадра пробуждения
 - "Ошибка": контрольная сумма, четность или синхронизация
 - "Идентификатор": специальный идентификатор сообщения или диапазон идентификаторов
 - "Идентиф. и данные": комбинация идентификатора и условия данных
- Если выбрана функция "Идентификатор" или "Идентиф. и данные", диалоговое окно настройки запуска по сигналам шины LIN расширяется для задания шаблона данных.
Настройки запуска по сигналам шины LIN

LIN Tr	igger	Identifier and Data	1						
Identifier	Bin	111001	Compare Lower	Than 🗸					
	Hex	39							
Data		3 Byte	Compare Not E	qual 🗸		Х	0	1	
	Bin	00000000	000000001	1111111	11 xxxxxxx	(X			
	Hex	00	01	FF	XX		8		В
	Bin	****	x x x x x x x x x x	XXXXXXX	xx xxxxxx	(X	с		
	Hex	XX	XX	XX	XX				

Рис. 12-28: Окно настройки запуска по шаблонам идентификатора или данных

о (синий) = Выбранный бит во 2^м байте шаблона данных, где синий цвет указывает на то, что для этого бита доступен ввод с клавиатуры

Запуск LIN	253
Ошибка	
L Контр. сумма	
L Четность	254
L Синхронизация	
Условие идентификатора	
L Идентификатор	
L Сравнить	
L Символьный ID	
Data condition (условие данных).	
L Данные	
L Сравнить	255
L Bin / Hex (двочный/шестналиатеричный)	255

Запуск LIN

Выбор режима запуска.

"Начало кадра"	Запуск по стоповому биту поля синхронизации.
"Пробужд."	Запуск после кадра пробуждения.
"Ошибка"	Идентификация различных ошибок в кадре. В качестве условия запуска может быть выбран один или несколько типов ошибок. См. "Ошибка" на стр. 254.
"Идентифика- тор"	Запуск по специальному идентификатору сообщения или диапа- зону идентификаторов. При этом учитывается только 8-битный идентификатор без битов контроля четности, т. е. незащищен- ный идентификатор. См. "Условие идентификатора" на стр. 254.

"Идентиф. и Запуск по комбинации условий идентификатора и данных. Запуск прибора осуществляется по концу последнего байта заданного шаблона данных.
 Пример показан на рис. 12-28.
 См. подразделы "Условие идентификатора" на стр. 254 и "Data condition (условие данных)" на стр. 255.

Команда дистанционного управления: TRIGger:A:LIN:TYPE на стр. 569

Ошибка

Выбор одного или нескольких типов ошибок в качестве условия запуска.

Контр. сумма ← Ошибка

Ошибка контрольной суммы. Контрольная сумма служит для проверки правильности передачи данных. Она содержится в последнем байте ответного кадра. Контрольная сумма включает не только данные, но и защищенный идентификатор (PID).

Команда дистанционного управления: TRIGger:A:LIN:CHKSerror на стр. 570

Четность - Ошибка

Ошибка контроля четности. Биты 6 и 7 идентификатора являются битами контроля четности. Они служат для проверки правильности передачи идентификатора.

Команда дистанционного управления: TRIGger:A:LIN:IPERror на стр. 570

Ошибка синхронизации.

Команда дистанционного управления: TRIGger:A:LIN:SYERror на стр. 570

Условие идентификатора

Условие идентификатора включает следующие параметры:

- Значение идентификатора
- Сравнение

Задание шаблона идентификатора в двоичном или шестнадцатеричном формате. Для задания отдельного двоичного бита или шестнадцатеричного полубайта коснитесь его и введите значение с помощью экранной клавиатуры.

"Bin"

- В строке содержится двоичный шаблон, максимальное количество битов в котором равно 64 . Допустимыми являются символы 0, 1 и X.
- "Hex" В строке содержится шестнадцатеричный шаблон, максимальное количество байтов в котором равно 8. Допустимыми являются символы 0-F и X.

Komaндa дистанционного управления: TRIGger:A:LIN:IDENtifier на стр. 570

Сравнить - Условие идентификатора

Установка условия сравнения идентификатора: Если в шаблоне идентификатора содержится по крайней мере один бит X (произвольное состояние), запуск может осуществляться по значениям как равным, так и не равным заданному. Если в шаблоне содержатся только 0 и 1, запуск возможен также по диапазону значений, которые больше или меньше заданного.

Команда дистанционного управления: TRIGger:A:LIN:ICONdition на стр. 570

Символьный ID - Условие идентификатора

Если в конфигурации шины был загружен и включен список меток с символьными именами, вместо ввода числового идентификатора можно выбрать символьное имя из списка. Запуск прибора осуществляется по идентификатору выбранного узла.

Data condition (условие данных)

Условие данных включает следующие настройки:

- Длина шаблона данных
- Сравнение
- Шаблон данных

Данные \leftarrow Data condition (условие данных)

Задание длины шаблона данных - количества байтов в шаблоне.

Команда дистанционного управления: TRIGger:A:LIN:DLENgth на стр. 571

Сравнить ← Data condition (условие данных)

Установка условия сравнения: Если в шаблоне содержится по крайней мере один бит X (произвольное состояние), запуск может осуществляться по значениям как равным, так и не равным заданному. Если в шаблоне содержатся только 0 и 1, запуск возможен также по диапазону значений, которые больше или меньше заданного.

Команда дистанционного управления: TRIGger:A:LIN:DCONdition на стр. 571

Віп / Нех (двочный/шестнадцатеричный) ← Data condition (условие данных) Задание шаблона данных, по которому выполняется запуск. Для задания отдельного двоичного бита или шестнадцатеричного полубайта коснитесь его и введите значение с помощью экранной клавиатуры. Убедитесь, что задаваемые байты являются полными.

"Bin" В строке содержится двоичный шаблон, максимальное количество битов в котором равно 64. Допустимыми являются символы 0, 1 и X.

"Hex" В строке содержится шестнадцатеричный шаблон, максимальное количество байтов в котором равно 8. Допустимыми являются символы 0-F и X.

Команда дистанционного управления: TRIGger:A:LIN:DATA на стр. 571

12.6.4 Результаты декодирования сигналов шины LIN

После завершения конфигурирования последовательной шины можно осуществлять декодирование сигнала:

- 1. В меню "Шина" выберите "Декодировать".
- В меню "Отображ." задайте настройки отображения результата. См. гл. 12.1.2, "Отображение результатов декодирования", на стр. 202.
- В меню "Таблица шины" включите "Таблица шины". Задайте настройки таблицы.

См. также:гл. 12.1.3, "Таблица данных шины: Результаты декодирования", на стр. 203

Прибор захватывает и декодирует сигнал в соответствии с описанием протокола и конфигурационными параметрами.

Цветовое кодирование различных секций протокола и ошибок упрощает интерпретацию визуального отображения. Декодированная информация сжимается или расширяется в зависимости от масштаба по горизонтали. Для отображения результатов доступны различные форматы данных.

Рис. 12-29: Декодированный сигнал шины LIN с таблицей данных шины; запуск по началу кадра

Табл. 12-5: Содержимое таблицы для кадра LIN

Столбец	Описание
Start Time (время начала)	Время начала кадра относительно точки запуска
ID (идентификатор)	Значение идентификатора, шестнадцатеричное значение
Length (длина)	Кол-во байтов данных
Data (данные)	Шестнадцатеричные значения байтов данных
Chks	Значение контрольной суммы
State (состояние)	Общее состояние кадра.

Команды дистанционного управления описаны в гл. 17.11.6.3, "LIN - Decode Results", на стр. 571.

12.6.5 Поиск по декодированным данным шины LIN

С помощью функции поиска можно обнаруживать одинаковые события в декодированных данных, по которым также может осуществляться запуск. В отличие от функции запуска, функция поиска позволяет обнаруживать все события в выборке, удовлетворяющие условию запуска. Результаты отображаются в таблице и могут быть сохранены в файл.

Рис. 12-30: Поиск ошибок по сигналам шины LIN

Поиск событий по сигналам шины LIN

- 1. Правильно сконфигурируйте и декодируйте данные шины.
- 2. Выполните сбор декодированных данных.
- 3. Нажмите клавишу Search.
- 4. Выберите "Тип поиска" = "Protocol".
- 5. Выберите источник "Источник": шину, сконфигурированную для протокола LIN.
- 6. Выберите событие "Событие", поиск которого будет выполнен.
- 7. Введите дополнительные настройки в зависимости от выбранного события.

LIN 2 × Event Id & Error v Bin 101100 Identifier Compare Equal v Hex 2C Checksum Parity Synchronization Error CRC ID

Настройки поиска по сигналам шины LIN

Рис. 12-31: Поиск кадров данных с идентификатором 2С (hex), в которых имеется ошибка, по сигналам шины LIN

Событие	258
Настр. кадра	258
Ошибка	259
Условие идентификатора.	259
Data condition (условие данных)	259

Событие

Установка события или комбинации событий, поиск которых будет выполнен. В зависимости от выбранного события отображаются дополнительные настройки.

Команда дистанционного управления: SEARch: PROTocol:LIN:CONDition на стр. 577

Настр. кадра

Выбор типа кадра, поиск которого будет выполнен.

Komaнда дистанционного управления: SEARch: PROTocol: CAN: FRAMe на стр. 564

Ошибка

Выбор типа ошибки для поиска. Можно выбрать один или несколько типов ошибок в качестве условия поиска. Типы ошибок идентичны тем, которые могут быть заданы в настройках запуска по сигналам шины LIN.

См. также "Ошибка" на стр. 254.

Эта настройка доступна, только если выбрано событие "Событие" = "Ошибка" или "ID & Error".

Komahga дистанционного управления: SEARch: PROTocol:LIN:CHKSerror на стр. 578 SEARch: PROTocol:LIN:IPERror на стр. 578 SEARch: PROTocol:LIN:SYERror на стр. 578

Условие идентификатора

Настройки для задания шаблона идентификатора, если выбрано событие "Событие" = "Идентификатор" или "ID и ошибка", или "ID и данные".

После задания условия "Сравнить" можно ввести значение идентификатора, установив каждый отдельный бит в высокое, низкое или произвольное (X) состояние. Кроме того, можно ввести шестнадцатеричное значение для каждого полубайта.

Настройки идентичны тем, которые представлены для запуска по идентификатору, см. также "Условие идентификатора" на стр. 254.

Если в конфигурации шины был загружен и включен список меток с именами узлов, вместо ввода числового идентификатора можно выбрать имя узла из списка. Запуск прибора осуществляется по идентификатору выбранного узла.

Komaнда дистанционного управления: SEARch: PROTocol:LIN: ICONdition на стр. 578 SEARch: PROTocol:LIN: IDENtifier на стр. 579

Data condition (условие данных)

Настройки для задания шаблона данных, поиск которого будет выполнен, если выбрано событие "Событие" = "ID и ошибка".

После задания длины данных "Данные" и условия "Сравнить" можно ввести значение данных, установив каждый отдельный бит в высокое, низкое или произвольное (X) состояние. Кроме того, можно ввести шестнадцатеричное значение для каждого полубайта.

Настройки идентичны тем, которые представлены для запуска по данным, см. также "Data condition (условие данных)" на стр. 255.

Komaнда дистанционного управления: SEARch: PROTocol:LIN:DLENgth на стр. 579 SEARch: PROTocol:LIN:DCONdition на стр. 579 SEARch: PROTocol:LIN:DATA на стр. 579

12.6.6 Список меток для протокола LIN

Для получения общей информации о списке меток обратитесь к гл. 12.1.5, "Список меток", на стр. 205. Список меток зависит от конкретного протокола. Списки меток для протокола LIN представлены в форматах CSV и PTT.

В файле со списком меток для протокола LIN содержится по два значения для каждого идентификатора:

- Знач идентиф
- Символьное имя идентификатора

Пример файла РТТ для протокола LIN

#
<pre>@FILE_VERSION = 1.0</pre>
<pre>@PROTOCOL_NAME = lin</pre>
#
Labels for LIN protocol
Column order: Identifier, Label
#
Labels for standard addresses
0x3F,Temperature
1Ch,Left brake
20h,Right brake
Following ID is provided as integer
33, Mirror
0x37,Indoor lights
Labels for reserved addresses
0x3C,Master_Request_Frame
0x3D,Slave_Response_Frame

Label List: LIN (Imported on: 2017-03-30; 16:50)		
Symbolic Label	ID I	Addr
Dashboard	0 x 0 3	
Door controller	0 x 2 E	
Gateway	0 x 0 2	
Indoor lights	0 x 3 7	
Master_Request_Frame	0 x 3 C	
Mirror	0 x 0 1	
Reserved_Frame	0 x 3 F	
Slave_Response_Frame	0 x 3 D	
Temperature	0 x 0 4	
User_Defined_Frame	0 x 3 E	

Рис. 12-32: Список меток для протокола LIN

Аудиосигналы (опция - К5)

RTB20	04; 1333.100	5K04; 900	012 (01.203 2	017-03-02	2)								
5	Ċ	Ē	∧,∕ Nx	٦	اللاس		₩.	~	B1	Auto	5 ms/	Complete	2017-03-30 16:58
Unde	o Redo	Delete	Nx Single	Meter	FFT	Annotation	Demo	Ť	Setup	156 MSa/s	18.169 958 4 i	ns Sample	**
<u>C1 / </u>													
B1													
	-10 ms	-5 ms		5		10 ms	15 ms		20 ms	25 ms 30 ms	s 35 ms	40 ms 4	15 ms
Ţ	500 µs/		229 . 984 μ:	S	19.5 <i>3</i> IV	ISa/s	Sampl	e					↓
81 2-													
B1		Brea	k Field		- (Syn	C Fiel		M	irror >	11 Data	: 5 2 h	Data:6Fh	
	-2.5 ms	-2 m	s -1.	5 ms	-1 ms	-500 µs	0 s		500 µs	1 ms 1.	5 ms 2 ms	2.5 ms	3 ms
\$	Bus	>	< Landa San San San San San San San San San Sa										•
Bus	Table: LIN (LIN: C1, H	, 9600 Bit/s))									P
Fr	ame S	tart T	ime ID) Leng	jth Da	ta (hex	a de cii	ma)	Chks St	ate			
	2	9.94	8 m s 0 2	2	1 2 6	516864	00		D9 Pa	ri+ChkS			
		18.17	8ms 03	3	7 5 3	636877	61727	A	18 S y	nc+ChkS			
		32.65	7 m s 0 4	l.	7 52	544232	30303		54 Ch	n k S			
Fram	es: 1-4/4												
C1	200 mV/	DC C	2		C3			24		D15-8	Bus	LIN	B1 Menu

Рис. 12-33: Декодированный сигнал LIN с таблицей для кадра и включенным списком меток

серый = прерывание синхронизации, байт синхронизации, правильная контрольная сумма

- желтый = идентификатор
- зеленый = биты контроля четности
- синий = слова данных (слова UART)

12.7 Аудиосигналы (опция -К5)

Прибор R&S RTM3000/RTA4004 может быть использован для анализа ряда стандартизованных и фактически ставших стандартизованными сигналов: стандартный аудиоформат I²S Inter-IC Sound, форматы данных LJ (с выравниванием влево), RJ (с выравниванием вправо) и аудиоформат с временным мультиплексированием (TDM).

12.7.1 Протоколы передачи аудиоданных

Для всех протоколов передачи аудиоданных используются 3 линии:

- Тактовая линия для генерации битового тактового сигнала.
- Линия выбора слова (WS, или word clock) для определения начала кадра и максимальной длины слова данных.

Для сигналов с импульсно-кодовой модуляцией (стандарт I²S и форматы данных с левым и правым выравниванием) уровень WS-сигнала определяет использование правого и левого каналов для слов данных. В формате TDM для идентификации начала кадра используются импульсы кадровой синхронизации по линии WS.

 Линия данных для передачи аудиоданных в каналах данных с временным мультиплексированием.

12.7.1.1 Стандарт I²S

I²S является стандартным интерфейсом передачи по двум аудиоканалам с импульсно-кодовой модуляцией. Линия WS служит для выбора рабочего канала – левый или правый канал. Как правило, по каждому каналу передается 32 бита. Слово данных может быть короче длины канала, в таком случае излишние биты игнорируются при приеме. Первый байт слова аудиоданных задерживается на один период тактовой частоты относительно первого фронта импульса выбора слова. Прибор R&S RTM3000/RTA4004 позволяет декодировать стандартные сигналы I²S с порядком следования битов MSBF (старший значащий бит) и LSBF (младший значащий бит).

12.7.1.2 Формат данных с выравниванием влево

Формат данных с выравниванием влево аналогичен стандарту I²S с тем лишь отличием, что первый байт слова аудиоданных выровнен относительно первого фронта слова выбора импульса. Таким образом, слово аудиоданных имеет левое выравнивание относительно кадра. Слово данных может быть короче длины канала.

В дополнение к стандартной конфигурации осциллограф R&S RTM3000/RTA4004 может быть использован для анализа данных с выравниванием влево, передаваемых со смещением по фронту WS. При этом может быть выбран порядок следования битов MSBF (старший значащий бит) или LSBF (младший значащий бит).

12.7.1.3 Формат данных с выравниванием вправо

Формат данных с выравниванием вправо аналогичен формату данных с выравниванием влево с тем лишь отличием, что последний байт слова в кадре выравнивается по последнему фронту импульса выбора слова. Таким образом, слово аудиоданных имеет правое выравнивание относительно кадра.

12.7.1.4 TDM

Формат аудиоданных TDM (Time Division Multiplexed, формат с временным уплотнением) не является стандартизованным форматом и позволяет передавать более двух каналов аудиоданных по одной линии. Для идентификации начала кадра используются импульсы кадровой синхронизации по линии выбора слова. По линии данных передаются блоки канала определенной длины. Каждый блок содержит слово аудиоданных, которое может быть короче длины канала.

Длина канала, смещение канала и длина слова являются взаимозависимыми величинами:

Длина канала ≥ Длина слова + Смещение канала

12.7.2 Конфигурация аудиосигналов

Правильное конфигурирование протокола и задание соответствующих пороговых значений являются условиями успешного декодирования сигнала.

Настройка и декодирование аудиосигнала

- 1. Нажмите клавишу PROTOCOL в области Analysis на передней панели.
- 2. Выберите шину, которую необходимо использовать: В1, В2, В3 или В4.
- 3. Выберите "Тип шины" = Audio.
- 4. Выберите функцию "Конфигурация".
- 5. Выберите источники для каналов "Выбор слова", "Такт" и "Данные".
- 6. Задайте пороговое значение. Используйте один из следующих способов:
 - Коснитесь функции "Поиск порога". Прибор оценит сигнал и установит пороговое значение.
 - Введите пороговое значение в числовое поле.
- Задайте остальные параметры сигнала в соответствии с его характеристиками. Все требуемые настройки рассматриваются ниже.
- 8. В меню "Шина" выберите "Декодировать".

Аудиосигналы (опция -К5)

Audio - B1	
WS: C3 Clock: C1 Data: C1	
Variant: TDM	

Параметры конфигурации аудиосигналов

Рис. 12-34: Диалоговое окно настройки аудиосигналов

Источник

Выбор линии аудиосигналов, которую необходимо сконфигурировать в меню.

Выбор слова

Выбор источника линии выбора слова.

Если установлена опция MSO -B1, можно использовать логические каналы в качестве источника.

Komaндa дистанционного управления: BUS:I2S:WSELect:SOURce на стр. 585

Полярность

Для сигналов I²S, LJ и RJ полярность определяет значения выбора слова, связанные с левым и правым каналами.

- "Норм.": 0 обозначает левый канал, а 1 обозначает правый канал. Это стандартная настройка.
- "Инверт.": 0 обозначает правый канал, а 1 обозначает левый канал.

Для сигналов TDM полярность задает фронт импульса кадровой синхронизации FSYNC, который обозначает начало кадра. Кадр начинается со следующим выбранным фронтом FSYNC тактового сигнала.

- "Норм.": кадр начинается с переднего (нарастающего) фронта. Это стандартная настройка.
- "Инверт.": кадр начинается с заднего (спадающего) фронта.

Komaнда дистанционного управления: BUS:I2S:WSELect:POLarity на стр. 584

Порог, Поиск порога

Задание порогового значения для канала источника. Введите значение или воспользуйтесь функцией "Поиск порога" для задания порога равным среднему опорному уровню измеренной амплитуды. Для аналоговых каналов это значение также может быть найдено в меню "По вертикали" > "Канал <n>" > "Порог"

Для логических каналов это значение также может быть найдено в меню "Логич" > "Технология".

Komaнда дистанционного управления: CHANnel<m>: THReshold на стр. 390 CHANnel<m>: THReshold: FINDlevel на стр. 391 DIGital<m>: THReshold на стр. 681

Такт

Выбор источника для тактовой линии.

Если установлена опция MSO -B1, можно использовать логические каналы в качестве источника.

Komaнда дистанционного управления: BUS:I2S:CLOCk:SOURce на стр. 582

Перепад

Установка фронта тактового импульса, по которому прибор дискретизирует данные на линии данных. Как правило, используется передний фронт. Прибор R&S RTM3000/RTA4004 может использоваться для анализа с противоположной настройкой.

Komaндa дистанционного управления: BUS:I2S:CLOCk:POLarity на стр. 582

Данные

Выбор источника для линии данных.

Если установлена опция MSO -B1, можно использовать логические каналы в качестве источника.

Команда дистанционного управления: BUS:I2S:DATA:SOURce на стр. 583

Активные

Определение способа интерпретации высокого и низкого состояний сигнала.

- "Active high": HIGH (уровень сигнала выше порогового уровня) = 1 и LOW (уровень сигнала ниже порогового уровня) = 0
- "Active low": HIGH = 0 и LOW = 1

Komaнда дистанционного управления: BUS:I2S:DATA:POLarity на стр. 582

Вариант

Выбор варианта протокола аудиосигнала. Возможности конфигурирования, представленные в приборе R&S RTM3000/RTA4004, полностью удовлетворяют самым высоким требованиям стандартов.

"I2S Standard" Аудиоформат в стандарте Inter-IC Sound. Первый байт слова аудиоданных задерживается на один период тактовой частоты относительно первого фронта импульса выбора слова.

- "Left justified" Формат данных с выравниванием влево аналогичен стандарту I²S. Первый байт слова аудиоданных выравнивается по переднему фронту импульса выбора слова. Таким образом, слово аудиоданных имеет левое выравнивание относительно кадра. В приборе R&S RTM3000/RTA4004 может быть задано дополнительное смещение слова аудиоданных.
- "Right justified" В формате данных с выравниванием вправо последний байт слова в кадре выравнивается по заднему фронту импульса выбора слова. Таким образом, слово аудиоданных имеет правое выравнивание относительно кадра. В приборе R&S RTM3000/ RTA4004 может быть задано дополнительное смещение слова аудиоданных.
- "TDM" Аудиоформат с временным мультиплексированием позволяет передавать до 8 каналов аудиоданных по одной линии. Для идентификации начала кадра используются импульсы кадровой синхронизации по линии выбора слова. По линии данных передаются блоки канала определенной длины. Слово аудиоданных содержится в каждом блоке.

Komaнда дистанционного управления: BUS:I2S:AVARiant на стр. 580

12.7.3 Конфигурирование версий аудиосигналов

В зависимости от выбранной версии аудиосигнала в приборе доступны различные настройки.

Первый канал

Выбор первого канала в кадре: левый или правый канал.

Эта настройка доступна для стандарта I²S, т. е. аудиосигналов с левым и правым выравниванием.

Komaнда дистанционного управления: BUS:I2S:CHANnel:ORDer на стр. 581

Кол-во каналов

Установка количества каналов, передаваемых по линии аудиоданных TDM.

Komaнда дистанционного управления: BUS:I2S:CHANnel:TDMCount на стр. 581

Задержка канала

Задание задержки канальных блоков после начала кадра (фронта выбора слова). Таким образом, сдвиг выполняется для всех каналов.

Эта настройка доступна только для TDM-сигналов.

Komaнда дистанционного управления: BUS:I2S:FOFFset на стр. 584

Длина канала

Установка количества битов в канальном блоке для TDM-аудиосигналов (длина передачи).

Эта настройка доступна только для TDM-сигналов.

Komaнда дистанционного управления: BUS:I2S:CHANnel:LENGth на стр. 581

Смещение канала

Установка количества битов между началом канала и началом аудиослова. Эта настройка доступна для формата данных с левым выравниванием и TDM-аудиосигналов.

В случае TDM-сигналов доступные значения определяются длинами канала и слова. Максимальное смещение ограничивается значением *Channel length - Word length* (длина канала - длина слова). При изменении длины канала или длины слова смещение канала подстраивается автоматически.

Komaндa дистанционного управления: BUS:I2S:CHANnel:OFFSet на стр. 581

Длина слова

Задание количества битов в слове аудиоданных (длина приема). Минимальная длина равна 1 биту, максимальная длина равна длине канала.

Komaнда дистанционного управления: BUS:I2S:WLENgth на стр. 584

Порядок битов

Установка порядка следования бита в словах аудиоданных. Как правило, первым передается MSB (младший значащий бит).

Команда дистанционного управления: BUS:I2S:BORDer на стр. 580

12.7.4 Запуск по аудиосигналам

Перед настройкой запуска следует убедиться, что шина сконфигурирована правильно. См. гл. 12.7.2, "Конфигурация аудиосигналов", на стр. 263.

Запуск по аудиосигналам:

- 1. Нажмите клавишу PROTOCOL в области Analysis на передней панели.
- 2. Выберите шину, сконфигурированную для аудиосигналов.
- 3. Выберите функцию "Запуск".

Выбор этой функции позволяет выполнить следующие действия:

- Включение функции декодирования (при необходимости).
- Установка для типа запуска "Тип запуска" значения "Serial Bus" (последовательная шина) и выбор указанной шины в качестве источника запуска.

- Отображение условия запуска в диалоговом окне под настройками протокола.
- 4. В "Запуск аудио" выберите требуемый тип запуска:
 - "Данные"
 - "Окно"
 - "Выбор слова"
 - "Ошибка"
- Задайте остальные параметры запуска в соответствии с характеристиками сигнала. Доступные настройки зависят от выбранного типа запуска. Все требуемые настройки рассматриваются ниже.

Настройки запуска по аудиосигналам

Канал

Выбор аудиоканала, по которому прибор выполняет поиск заданного условия данных. Эта настройка относится к типам запуска Data и Window.

Сравнить

Выбор оператора для сравнения декодированного и заданного слов данных.

Могут быть заданы следующие операторы: equal (равно), not equal (не равно), greater than (больше чем), lower than (меньше чем), in range (в диапазоне) и out of range (вне диапазона).

Если данные в выбранном канале не имеют отношения к условию запуска, выберите "Don't care".

Эта настройка относится к типам запуска Data и Window.

Команда дистанционного управления:

```
TRIGger:A:I2S:CHANnel:LEFT:CONDition Ha ctp. 586
TRIGger:A:I2S:CHANnel:RIGHt:CONDition Ha ctp. 587
TRIGger:A:I2S:CHANnel:TDM<n>:CONDition Ha ctp. 587
```

Данные / Данные мин. / Данные макс.

Задание слов данных для сравнения с декодированным словом данных. Данные задаются в десятичном формате. Максимальное значение ограничивается длиной слова. Как правило, слова аудиоданных представляют собой числа со знаком в двоичном дополнительном формате. Например, 8-битное слово данных имеет диапазон значений от -128 до 127.

Эта настройка относится к типам запуска Data и Window.

```
Komahga дистанционного управления:

TRIGger:A:I2S:CHANnel:LEFT:DMAX на стр. 586

TRIGger:A:I2S:CHANnel:LEFT:DMIN на стр. 587

TRIGger:A:I2S:CHANnel:RIGHt:DMAX на стр. 587

TRIGger:A:I2S:CHANnel:RIGHt:DMIN на стр. 587

TRIGger:A:I2S:CHANnel:TDM<n>:DMAX на стр. 588

TRIGger:A:I2S:CHANnel:TDM<n>:DMIN на стр. 588
```

Комбинация

Установка логической комбинации для запуска по словам данных в различных каналах. Запуск прибора осуществляется, если удовлетворяются все условия в одном кадре.

"And": запуск прибора осуществляется, если удовлетворяются условия данных во всех каналах.

"Or": запуск прибора осуществляется, если удовлетворяется одно из заданных условий данных.

Эта настройка относится к типам запуска Data и Window.

Komaнда дистанционного управления: TRIGger:A:I2S:FUNCtion на стр. 588

Длина окна

Установка количества последовательных кадров (отсчетов аудиосигнала), для которых должны удовлетворяться условия данных.

Команда дистанционного управления:

TRIGger:A:I2S:WINDow:LENGth Ha CTP. 589

Выбор слова

Установка переднего ("Положит.") или заднего ("Отрицат.") фронта сигнала выбора слова в качестве условия запуска.

Следует учитывать настройку "Выбор слова" > "Полярность" в меню конфигурации аудиосигнала.

Команда дистанционного управления: TRIGger:A:I2S:WSSLope на стр. 589

12.7.5 Результаты декодирования аудиосигналов

После завершения конфигурирования последовательной шины можно осуществлять декодирование сигнала:

- 1. В меню "Шина" выберите "Декодировать".
- В меню "Отображ." задайте настройки отображения результата. См. гл. 12.1.2, "Отображение результатов декодирования", на стр. 202.
- В меню "Таблица шины" включите "Таблица шины". Задайте настройки таблицы.

См. также:гл. 12.1.3, "Таблица данных шины: Результаты декодирования", на стр. 203

Прибор захватывает и декодирует сигнал в соответствии с описанием протокола и конфигурационными параметрами.

Цветовое кодирование различных секций протокола и ошибок упрощает интерпретацию визуального отображения. Декодированная информация сжимается или расширяется в зависимости от масштаба по горизонтали. Для отображения результатов доступны различные форматы данных.

Табл.	12-6: Содержимое таблицы для	кадра аудиосигнала

Столбец	Описание
Frame (кадр)	Номер кадра
Start Time (время начала)	Время начала кадра относительно точки запуска
Time Diff. (разность времени)	Временной интервал между кадрами
Left, Right (I ² S, LJ, RJ) CH1, CH2,CH8 (TDM)	Шестнадцатеричные значения аудиослов

Команды дистанционного управления описаны в гл. 17.11.7.3, "Audio Decode Results", на стр. 589.

12.8 MIL-STD-1553 (опция -К6)

•	Стандарт MIL-STD-1553	270
•	Конфигурация шины MIL-STD-1553	
•	Запуск шины MIL-STD-1553	275
•	Результаты декодирования шины MIL-STD-1553	
•	Список меток протокола MIL-STD-1553	

12.8.1 Стандарт MIL-STD-1553

Стандарт MIL-STD-1553 определяет характеристики последовательной шины данных изначально предназначенной для использования в военной авиационной электронике (авионике). Сейчас он также используется при бортовой обработке данных в космических аппаратах.

Шина является 2-проводной, в ней используются дифференциальные сигналы.

Система MIL-STD-1553 состоит из следующих компонентов:

- Контроллер шины (ВС): инициирует и координирует поток данных в системе.
- Удаленный терминал (RT): взаимодействует с различными подсистемами по шине данных. Система может содержать до 31 терминалов RT, каждый из которых может иметь 31 подадрес.
 Подадреса 0 и 31 относятся к команде кода режима.
- Монитор шины (BM) (опционально): принимает все сообщения и способен регистрировать выбранные данные для оперативного или автономного анализа.

Информация передается по шине заданными последовательностями слов с использованием манчестерского кода, где каждый бит передается в виде перехода высокий-низкий уровень (логическая 1) или перехода низкий-высокий уровень (логический 0). При этом доступно три типа слов: командные, данных и состояния.

Командное слово

Рис. 12-35: Структура командного слова

Формат командного слова складывается из следующих частей (см. рис. 12-35):

- Синхр: неверный манчестерский сигнал.
- Адрес удаленного терминала RT: уникальный адрес соответствующего терминала RT.
- Передача/прием (T/R): индикация действия, требуемого от RT.
- Подадрес/код режима: индикация подадреса RT. Подадреса 0 и 31 указывают на передачу кода режима.
- Число слов данных / код режима: индикация количества слов, переданных/ принятых терминалом RT. Допускается не более 32 слов. Данное поле может быть использовано для передачи значения кода режима.
- Четность: проверка битовых ошибок при передаче. Общее количество битов с логической 1 для слова (биты синхронизации не учитываются) должно быть нечетным.

Слово данных

Рис. 12-36: Структура слова данных

Формат слова данных складывается из следующих частей (см. рис. 12-36):

- Синхр: неверный манчестерский сигнал.
- Данн: передаваемая информация (16 бит).
- Четность: проверка битовых ошибок при передаче. Общее количество битов с логической 1 для слова (биты синхронизации не учитываются) должно быть нечетным.

Слово состояния

Формат слова состояния складывается из следующих частей (см. рис. 12-37):

- Синхр: неверный манчестерский сигнал.
- Адрес удаленного терминала RT: уникальный адрес соответствующего терминала RT.
- Ошибка сообщения: индикация ошибки при передаче командного слова/слова данных из контроллера ВС. Логическая 1 указывает на наличие ошибки сообщения, а логический 0 - на ее отсутствие.
- Применение: служит для различения слова состояния и командного слова. Логическое состояние данного бита должно быть равно 0.
- Запрос на обслуживание: индикация того, что терминалу RT требуется обслуживание. Логическая 1 указывает на наличие запроса на обслуживание, а логический 0 на его отсутствие.

- Резерв: бит зарезервирован для будущего использования.
- Широковещательная команда: логическая 1 указывает, что предшествующее действительное командное слово было широковещательной командой, а логический 0 - что не было.
- Занято: состояние занятости указывает на то, что терминал RT или подсистема не может передавать данные. Логическая 1 указывает на наличие состояния занятости, а логический 0 - на его отсутствие.
- Флаг подсистемы: флаг сбоя подсистемы. Логическая 1 указывает на наличие флага, а логический 0 - на его отсутствие.
- Принятие динамического управления шиной: логическая 1 указывает на принятие динамического управления шиной, а логический 0 на отказ.
- Терминальный флаг: флаги состояния сбоя RT. Логическая 1 указывает на наличие флага, а логический 0 на его отсутствие.
- Четность: проверка битовых ошибок при передаче. Общее количество битов с логической 1 для слова (биты синхронизации не учитываются) должно быть нечетным.

Для удобства анализа можно загрузить редактируемый список меток, чтобы интерпретировать переданные числовые значения в значимые текстовые метки.

12.8.2 Конфигурация шины MIL-STD-1553

Правильное конфигурирование протокола и задание соответствующих пороговых значений являются условиями успешного декодирования сигнала.

Настройка и декодирование сигнала шины MIL-STD-1553

- 1. Нажмите клавишу PROTOCOL в области Analysis на передней панели.
- 2. Выберите шину, которую необходимо использовать: В1, В2, В3 или В4.
- 3. Выберите тип шины "Тип шины" = MIL-STD-1553.
- 4. Выберите функцию "Конфигурация".
- 5. Выберите "Источник": канал, к которому подключен входной сигнал.
- 6. Задайте пороговые значения "Порог выс. ур." и "Порог низк. ур.".
- Задайте остальные параметры сигнала в соответствии с его характеристиками. Все требуемые настройки рассматриваются ниже.
- 8. В меню "Шина" выберите "Декодировать".

MIL-STD-1553 (опция -K6)

Настройки конфигурации шины MIL-STD-1553

Рис. 12-38: Диалоговое окно настройки шины MIL-STD-1553

Источник

Установка канала для источника сигнала.

Команда дистанционного управления: BUS:MILStd:SOURce на стр. 594

Полярность

Установка полярности сигнала шины.

Komaнда дистанционного управления: BUS:MILStd:POLarity на стр. 593

Порог, Поиск порога

Задание порогового значения для канала источника. Введите значение или воспользуйтесь функцией "Поиск порога" для задания порога равным среднему опорному уровню измеренной амплитуды.

Для аналоговых каналов это значение также может быть найдено в меню "По вертикали" > "Канал <n>" > "Порог"

Для логических каналов это значение также может быть найдено в меню "Логич" > "Технология".

Komaнда дистанционного управления: CHANnel<m>: THReshold на стр. 390 CHANnel<m>: THReshold: FINDlevel на стр. 391 DIGital<m>: THReshold на стр. 681

Порог выс. ур. Установка верхнего порогового уровня.

Komaндa дистанционного управления: BUS:MILStd:THReshold:HIGH на стр. 594

Анализ последовательных шин

MIL-STD-1553 (опция -K6)

Порог низк. ур. Установка нижнего порогового уровня. Команда дистанционного управления:

BUS:MILStd:THReshold:LOW Ha CTP. 595

Ответ макс.

Установка максимального значения для времени отклика.

Komaндa дистанционного управления: BUS:MILStd:RESPonsetime:INFinite на стр. 594 BUS:MILStd:RESPonsetime:MAXimum на стр. 594 BUS:MILStd:RESPonsetime:MINimum на стр. 594

Время IMG

Установка максимального значения для временного интервала между сообщениями .

Komaнда дистанционного управления: BUS:MILStd:IMGTime:INFinite на стр. 593 BUS:MILStd:IMGTime:MAXimum на стр. 593 BUS:MILStd:IMGTime:MINimum на стр. 593

12.8.3 Запуск шины MIL-STD-1553

Перед настройкой запуска следует убедиться, что шина сконфигурирована правильно. См. гл. 12.8.2, "Конфигурация шины MIL-STD-1553", на стр. 273.

Запуск по сигналам шины MIL-STD-1553:

- 1. Нажмите клавишу PROTOCOL в области Analysis на передней панели.
- 2. Выберите шину, сконфигурированную для LIN.
- 3. Выберите функцию "Запуск".

Выбор этой функции позволяет выполнить следующие действия:

- Включение функции декодирования (при необходимости).
- Установка для типа запуска "Тип запуска" значения "Serial Bus" (последовательная шина) и выбор указанной шины в качестве источника запуска.
- Отображение условия "Запуск MIL" в диалоговом окне под настройками протокола.
- 4. В "Запуск MIL" выберите требуемый тип запуска:
 - "Ошибка": по комбинации ошибок протоколов
 - "Команда": по заданной команде
 - "Состояние": по заданному состоянию
 - "Команда и данные": по заданной команде и данным
- 5. Задайте остальные параметры запуска в соответствии с характеристиками сигнала. Все требуемые настройки рассматриваются ниже.

MIL-STD-1553 (опция -K6)

Настройки запуска по сигналам шины MIL-STD-1553

MIL-STD-1553 - B	1						
Trigger On :	Command						
Bit Times	123456	7 8 9] [1	10 11 12 13 14	15 16 17 18 19	20	
Command	RT Add	ress [)	Sub Address	Word Count	Р	
Symbolic ID : RT Address :	User defined Equal	0×X:	ĸ	xx>	«xx		
Data Direction : Sub Address :	Either Equal	0xX	ĸ	***	«xx		
Word Count :	Greater Equal	0					

Рис. 12-39: Окно настройки запуска по шаблонам идентификатора или данных

Синхронизация

Запуск по импульсам синхронизации. Можно выбрать запуск по словам "C/S" (Commando/Status), по данным "Data" или всем "All" импульсам синхронизации.

Команда дистанционного управления: TRIGger:A:MILStd:SYNC на стр. 601

Слово

Выбор типа слова, по которому будет выполнен запуск. Выбранный тип слова указывается в имени функциональной клавиши.

Команда дистанционного управления: TRIGger:A:MILStd:WORD на стр. 602

Ошибка

Запуск по любой комбинации ошибок протокола. В подменю можно выбрать запуск по конкретным типам ошибок.

Синхронизация - Ошибка

Запуск выполняется, если синхроимпульс не удовлетворяет техническим требованиям или передача недействительна.

Komaнда дистанционного управления: TRIGger:A:MILStd:ERRor:SYNC на стр. 597

Четность - Ошибка

Проверка четности каждого слова и выполнение запуска, если четность показывает четное значение.

Komaнда дистанционного управления: TRIGger:A:MILStd:ERRor:PARity на стр. 597

Манчестерск. - Ошибка

Запуск выполняется, если существует ошибка в манчестерском кодировании сигнала.

Komaндa дистанционного управления: TRIGger:A:MILStd:ERRor:MANChester на стр. 597

Таймаут - Ошибка

Запуск выполняется, если значение таймаута выходит за пределы заданного диапазона. Диапазон может быть задан в меню "Bus type" = "MIL-STD-1553"> "Configuration" > "Timing setup".

Команда дистанционного управления: TRIGger:A:MILStd:ERRor:TIMeout на стр. 597

Команда

Запуск по командному слову, заданному в подменю.

Тип команды - Команда

Выбор типа команды.

Символьный ID Команда

Если в конфигурации шины был загружен и включен список меток с именами узлов, вместо ввода числового идентификатора можно просто выбрать имя узла из списка.

Запуск прибора осуществляется по идентификатору выбранного узла.

Адрес RT - Команда

Вызов подменю для задания адреса терминала RT.

Сравнить ← Адрес RT ← Команда

Установка условия, согласно которому декодированное значение сравнивается с выбранным диапазоном.

Komaнда дистанционного управления: TRIGger:A:MILStd:RTADdress:CONDition на стр. 599

Ред. минимум/Ред. максимум - Адрес RT - Команда

Вызов подменю "Ред. минимум"/"Ред. максимум".

После задания условия "Сравнить" можно ввести значение побитово, установив каждый отдельный бит в высокое, низкое или произвольное (X) состояние. Кроме того, можно задать значение в шестнадцатеричном формате.

Komaнда дистанционного управления: TRIGger:A:MILStd:RTADdress:MAXimum на стр. 599 TRIGger:A:MILStd:RTADdress:MINimum на стр. 599

Направл. данных - Команда

Переключения направления движения данных выбранной команды: Т (передача), R (прием или X (оба направления).

Komaнда дистанционного управления: TRIGger:A:MILStd:TRMode на стр. 601

MIL-STD-1553 (опция -K6)

Подадрес - Команда

Установка подадреса.

Сравнить - Подадрес - Команда

Установка условия, согласно которому декодированное значение сравнивается с выбранным диапазоном.

Komaнда дистанционного управления: TRIGger:A:MILStd:SADDress:CONDition на стр. 599

Ред. минимум/Ред. максимум - Подадрес - Команда

Вызов подменю "Ред. минимум"/"Ред. максимум".

После задания условия "Сравнить" можно ввести значение побитово, установив каждый отдельный бит в высокое, низкое или произвольное (X) состояние. Кроме того, можно задать значение в шестнадцатеричном формате.

Команда дистанционного управления:

TRIGger:A:MILStd:SADDress:MAXimum Ha CTp. 599 TRIGger:A:MILStd:SADDress:MINimum Ha CTp. 600

Число слов Команда

Установка количества слов.

Сравнить ← Число слов ← Команда

Установка условия, согласно которому декодированное значение сравнивается с выбранным диапазоном.

Komaнда дистанционного управления: TRIGger:A:MILStd:WCOunt:CONDition на стр. 602

Минимум - Число слов - Команда

Установка минимального значения диапазона количества слов.

Komaнда дистанционного управления: TRIGger:A:MILStd:WCOunt:MINimum на стр. 602

Установка максимального значения диапазона количества слов.

Komaндa дистанционного управления: TRIGger:A:MILStd:WCOunt:MAXimum на стр. 602

Подадрес - Команда

Если выбран тип команды "Тип команды" > "Код режима", выбор подадреса ограничен значениями "0", "31" или "0 | 31"

Komaнда дистанционного управления: TRIGger:A:MILStd:SADDress:MCADdress на стр. 599

Код режима - Команда

Выбор типа кода режима, если выбран тип команды "Command Type" > "Mode Code".

MIL-STD-1553 (опция -K6)

Команда дистанционного управления: TRIGger:A:MILStd:MCODe:CODE на стр. 598

Состояние

Запуск по заданному слову состояния.

См. также Адрес RT.

Состояние - Состояние

Выбор бита состояния. Для каждого бита может быть выбрано состояние "Состояние", по которому выполняется запуск.

См. также: "Слово состояния" на стр. 272

Komahga дистанционного управления: TRIGger:A:MILStd:STATus:BCReceived на стр. 600 TRIGger:A:MILStd:STATus:BUSY на стр. 600 TRIGger:A:MILStd:STATus:DBCaccept на стр. 600 TRIGger:A:MILStd:STATus:INSTrument на стр. 600 TRIGger:A:MILStd:STATus:MERRor на стр. 600 TRIGger:A:MILStd:STATus:SREQuest на стр. 601 TRIGger:A:MILStd:STATus:SUBSystem на стр. 601 TRIGger:A:MILStd:STATus:TERMinal на стр. 601

Выбор логического состояния выбранного бита: 0 (низкое), 1 (высокое) или Х (произвольное).

Команда и данные

Запуск по заданной команде или данным, см.

Передача Команда и данные

Установка типа передачи: "BC-RT" (из контроллера шины в удаленный терминал); "RT - BC" (из удаленного терминала в контроллер шины), "RT - RT" (из удаленного терминала в удаленный терминал),"Mode Code" с данными.

Komahga дистанционного управления: TRIGger:A:MILStd:TTYPe на стр. 601

Данные Команда и данные

Запуск по заданным данным.

Сравнить смещ. - Данные - Команда и данные

Установка условия, согласно которому декодированное значение сравнивается с выбранным смещением.

Komaндa дистанционного управления: TRIGger:A:MILStd:DATA:OFFSet:CONDition на стр. 596

Смещение ← Данные ← Команда и данные Установка смещения слова.

Komaндa дистанционного управления: TRIGger:A:MILStd:DATA:OFFSet на стр. 596

Анализ последовательных шин

MIL-STD-1553 (опция -K6)

Слова данных – Данные – Команда и данные

Установка количества слов. Может быть задано до четырех слов.

Команда дистанционного управления:

TRIGger:A:MILStd:DATA:WORDs Ha CTp. 597

Сравнить данные - Данные - Команда и данные

Установка условия, согласно которому декодированное значение сравнивается с выбранным диапазоном.

Komaндa дистанционного управления: TRIGger:A:MILStd:DATA:CONDition на стр. 596

Минимум/Максимум - Данные - Команда и данные

Вызов подменю "Минимум"/"Максимум".

После задания условия "Сравнить" можно ввести значение побитово, установив каждый отдельный бит в высокое, низкое или произвольное (X) состояние. Кроме того, можно задать значение в шестнадцатеричном формате.

Команда дистанционного управления: TRIGger:A:MILStd:DATA:MAXimum на стр. 596

TRIGger:A:MILStd:DATA:MINimum Ha CTP. 596

12.8.4 Результаты декодирования шины MIL-STD-1553

После завершения конфигурирования последовательной шины можно осуществлять декодирование сигнала:

- 1. В меню "Шина" выберите "Декодировать".
- В меню "Отображ." задайте настройки отображения результата. См. гл. 12.1.2, "Отображение результатов декодирования", на стр. 202.
- 3. В меню "Таблица шины" включите "Таблица шины". Задайте настройки таблицы.

См. также:гл. 12.1.3, "Таблица данных шины: Результаты декодирования", на стр. 203

Прибор захватывает и декодирует сигнал в соответствии с описанием протокола и конфигурационными параметрами.

Цветовое кодирование различных секций протокола и ошибок упрощает интерпретацию визуального отображения. Декодированная информация сжимается или расширяется в зависимости от масштаба по горизонтали. Для отображения результатов доступны различные форматы данных.

Табл. 12-7: Содержимое таблицы для кадров MIL-STD-1553

Столбец	Описание
Start Time (время начала)	Время начала слова относительно точки запуска
Туре (тип)	Тип слова

Шина ARINC 429 (опция - K7)

Столбец	Описание
RTA	Адрес удаленного терминала RT
Label (метка)	Символьная метка, доступная, если был загружен и включен список меток
T/R	Направление пересылки данных: передача или прием
Sub	Подадрес
Length (длина)	Кол-во байтов данных
Data (данные)	Шестнадцатеричные значения байтов данных
RT/IMG	Время отклика / временной интервал между сообщениями
State (состояние)	Общее состояние слова

Команды дистанционного управления описаны в гл. 17.11.8.3, "MIL-1553 Decode Results", на стр. 602.

12.8.5 Список меток протокола MIL-STD-1553

Список меток зависит от конкретного протокола. В файле со списком меток для протокола MIL-STD-1553 содержится по три значения для каждого идентификатора:

- "Symbolic label": символьное имя адресуемого устройства, или метка подадреса. Метки расположены в алфавитном порядке.
- "RT Addr.": шестнадцатеричное значение адреса удаленного терминала
- "Sub Addr": шестнадцатеричное значение подадреса

Пример: РТТ-файл для протокола MIL

```
# -----
# Labels for MIL.1553 protocol
# Column order: RT address, RT label, Subaddress, Subaddress Label
# ------
@PROTOCOL_NAME = mil1553
OAh,Engine,O1h,Thrust
O3h,Main panel,O7h,Altimeter
O3h,Main panel,O1h,Speed
OEh,Only RTA
```

12.9 Шина ARINC 429 (опция - K7)

•	Основные сведения о шине ARINC 429	282
•	Конфигурация шины ARINC 429	. 282
•	Запуск по шине ARINC 429	284
•	Результаты декодирования шины ARINC 429	288
•	Поиск по декодированным данным ARINC 429	289
•	Список меток ARINC 429.	. 292

12.9.1 Основные сведения о шине ARINC 429

ARINC 429 представляет собой стандарт, который определяет характеристики шины данных авионики, используемой в гражданской и транспортной авиации.

В системе ARINC 429 один передатчик/источник подключен к 1-20 приемникам/ потребителям с помощью одной витой пары. В шине используются дифференциальные сигналы. В стандарте ARINC 429 используется симплексная связь данные могут передаваться только в одном направлении. Информация передается по шине заданными сериями слов.

Формат слова

32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6	5 4 3 2 1
P SSM Data SDI L	Label

Рис. 12-40: Структура спова ARINC 429

Слово ARINC 429 является 32-битным и состоит из следующих частей (см. рис. 12-40):

- Четность: старший бит (MSB). Проверка битовых ошибок при передаче.
 Общее количество битов с логической 1 для слова должно быть нечетным.
- Матрица знака/состояния (SSM): значение этих битов зависит от типа данных. Матрица может использоваться для отчета о состоянии аппаратуры.
- Данные:
 - Двоичные (BNR): сохранение данных в виде двоичного числа.
 - Двоично-десятичный код (BCD): используется 4 бита полей данных для представления десятичного разряда.
 - Дискретные данные: комбинация BNR и/или BCD или отдельных битов, которая выражает конкретное состояние оборудования.
 - Данные обслуживания и подтверждение
 - Протокол Вилльямсбурга/Букхорна: битово-ориентированный протокол, который используется для передачи файлов.
- Идентификатор источника/назначения (SDI): индикация назначенного приемника или передающей подсистемы.
- Метка: предоставление информации о типе данных слова.

Для удобства анализа можно загрузить редактируемый список меток, чтобы интерпретировать переданные числовые значения в значимые текстовые метки.

12.9.2 Конфигурация шины ARINC 429

Правильное конфигурирование протокола и задание соответствующих пороговых значений являются условиями успешного декодирования сигнала.

Настройка и декодирование сигнала шины ARINC 429

- 1. Нажмите клавишу PROTOCOL в области Analysis на передней панели.
- Выберите шину, которую необходимо использовать: В1, В2, В3 или В4.
- 3. Выберите "Тип шины" = ARINC 429.
- 4. Выберите функцию "Конфигурация".
- 5. Выберите "Источник": канал, к которому подключен входной сигнал.
- 6. Задайте пороговое значение:
 - Коснитесь функции "Поиск порога". Прибор оценит сигнал и установит пороговое значение.
 - Введите пороговое значение в числовое поле.
- Задайте остальные параметры сигнала в соответствии с его характеристиками. Все требуемые настройки рассматриваются ниже.
- 8. В меню "Шина" выберите "Декодировать".

Настройки конфигурации шины ARINC 429

Рис. 12-41: Диалоговое окно настройки протокола ARINC 429

Источник

Установка канала для источника сигнала.

Команда дистанционного управления: BUS:ARINc:SOURce на стр. 616

Полярность

Установка полярности сигнала шины.

Команда дистанционного управления: BUS:ARINc:POLarity на стр. 616

Порог, Поиск порога

Задание порогового значения для канала источника. Введите значение или воспользуйтесь функцией "Поиск порога" для задания порога равным среднему опорному уровню измеренной амплитуды.

Для аналоговых каналов это значение также может быть найдено в меню "По вертикали" > "Канал <n>" > "Порог"

Для логических каналов это значение также может быть найдено в меню "Логич" > "Технология".

Komaнда дистанционного управления: CHANnel<m>: THReshold на стр. 390 CHANnel<m>: THReshold: FINDlevel на стр. 391 DIGital<m>: THReshold на стр. 681

Порог выс. ур.

Установка верхнего порогового значения.

Komaнда дистанционного управления: BUS:ARINc:THReshold:HIGH на стр. 616

Порог низк. ур.

Установка верхнего порогового значения.

Komaнда дистанционного управления: BUS:ARINc:THReshold:LOW на стр. 616

Скорость передачи данных

Установка режима битовой скорости: высокая скорость (100 кбит/с), низкая скорость (12,5 кбит/с) или пользовательское значение.

Komahda ductahuohhoro ynpabnehus: BUS:ARINc:BRMode Ha ctp. 615 BUS:ARINc:BRValue Ha ctp. 616

Декодир. формат

Установка формата декодирования данных для шины ARINC 429: данные, SSM +данные, SSM+данные+SDI, данные+SDI.

Komaнда дистанционного управления: BUS:ARINc:DATA:FORMat на стр. 621

12.9.3 Запуск по шине ARINC 429

Перед настройкой запуска следует убедиться, что шина сконфигурирована правильно. См. гл. 12.9.2, "Конфигурация шины ARINC 429", на стр. 282.

Запуск по сигналам шины ARINC 429:

- 1. Нажмите клавишу PROTOCOL в области Analysis на передней панели.
- 2. Выберите шину, сконфигурированную для ARINC 429.
- 3. Выберите функцию "Запуск".

Выбор этой функции позволяет выполнить следующие действия:

- Включение функции декодирования (при необходимости).
- Установка для типа запуска "Тип запуска" значения "Serial Bus" (последовательная шина) и выбор указанной шины в качестве источника запуска.
- Отображение условия "Запуск ARINC" в диалоговом окне под настройками протокола.
- 4. В "Запуск ARINC" выберите требуемый тип запуска:
 - "Слово": по началу или концу слова
 - "Ошибка": по комбинации ошибок протоколов
 - "Метка": по заданной метке.
 - "Метка и данные": по комбинации условий данных и метки
 - "Передача": по передаче данных.
- 5. Задайте остальные параметры запуска в соответствии с характеристиками сигнала. Все требуемые настройки рассматриваются ниже.

Настройки запуска шины ARINC 429

Рис. 12-42: Окно настройки запуска по шаблонам метки и данных

Слово

Запуск по началу или концу слова.

Komaндa дистанционного управления: TRIGger:A:ARINc:WORD:TYPE на стр. 620

Ошибка

Запуск по любой комбинации ошибок протокола. В подменю можно выбрать запуск по конкретным типам ошибок.

Четность ← Ошибка

Проверка четности и запуск, если результат четный.

Шина ARINC 429 (опция - K7)

Komaнда дистанционного управления: TRIGger:A:ARINC:ERROr:PARity на стр. 618

Ошибка промежутка - Ошибка

Запуск по ошибке временного интервала. Временной интервал автоматически рассчитывается на основании заданной частоты дискретизации.

Komaнда дистанционного управления: TRIGger:A:ARINc:ERRor:GAP на стр. 618

Ошибка кодирования - Ошибка

Запуск по ошибке кодирования.

Komaнда дистанционного управления: TRIGger:A:ARINc:ERRor:CODing на стр. 618

Метка

Задание параметров метки, по которой выполняется запуск.

ARINC 429 - I	81							?	×
Trigger On	Label	¥	32 31 30 29 28	27 26 25 24 23 2	2 21 20 19 18 17	16 15 14 13 12 1		5 4 3 .abel	2 1
							LSB		MSB
Symbolic ID	User defined	۲							
Label	In Range	۲	Min	XXXo	0xXX	XX XXX XXX			
			Max	XXXo	0xXX	XX XXX XXX			

Символьный ID - Метка

Если в конфигурации шины был загружен и включен список меток с именами узлов, вместо ввода числового идентификатора можно просто выбрать имя узла из списка.

Запуск прибора осуществляется по идентификатору выбранного узла.

Метка и данные

Задание параметров метки и данных, по которым выполняется запуск. См. также: Символьный ID

Шина ARINC 429 (опция - K7)

ARINC 429 -	B1								?	' >	K
Trigger On	Label and Data	•	32 31 30 29 28	27 26 25 24 23 22	2] 21 20 19 18 17 Data Field	16 15 14 13 12 11	10 9 SDI	8 7	6 5 4 3 Label	21]
					()	LSB		MSB	
Format	SSM+Data+SDI	•	Unu	sed	Data:	8 Bit Offset: 0 Bit					
Symbolic ID	User defined	۷									
Label	In Range	*	Min	XXXo	0xXX	XX XXX XXX					
			Max	XXXo	0xXX	XX XXX XXX					
SDI	Any	*									
Data	Equal	*	Data Size	8 Bit	Data Offset	0 Bit					
					XXXX	< x x x x					
						XX					
SSM	Any	*									

SSM - Метка и данные

Установка значений для битов матрицы знака/состояния (SSM).

Команда дистанционного управления: TRIGger:A:ARINc:SSM на стр. 620

SDI - Метка и данные

Установка значений для битов идентификатора источника/назначения (SDI).

Команда дистанционного управления: TRIGger:A:ARINc:SDI на стр. 619

Запуск по данным, заданным в подменю.

Смещение данных - Данные - Метка и данные

Установка смещения данных.

Komaнда дистанционного управления: TRIGger:A:ARINc:DATA:OFFSet на стр. 618

Размер данных ← Данные ← Метка и данные Установка размера данных.

у отаповка размера данных.

Komaнда дистанционного управления: TRIGger:A:ARINc:DATA:SIZE на стр. 618

Сравнить - Данные - Метка и данные

Установка условия, согласно которому декодированное значение сравнивается с выбранным диапазоном.

Komaнда дистанционного управления: TRIGger:A:ARINc:DATA:CONDition на стр. 617

После задания условия "Сравнить" можно ввести значение побитово, установив каждый отдельный бит в высокое, низкое или произвольное (X) состояние. Кроме того, можно ввести шестнадцатеричное значение для каждого байта.

Команда дистанционного управления:

TRI	Gger	:A:	ARINC:	DATA	:MAX:	imum	на	стр.	617
TRI	Gqer	:A:	ARINC:	DATA	:MIN:	imum	на	стр.	618

Передача

Установка условий передачи, по которым выполняется запуск.

См. также:

- "Символьный ID" на стр. 286
- "Метка" на стр. 286
- "Данные" на стр. 287

ARINC 429 -	B1			?	×
Trigger On	Transmission	•	Other Labels		
Format	Data+SDI	•	, Transmission Interval ,		
Symbolic ID	User defined	Y			
Label	Equal	Y	XXXxo 0xXX xxx xxx xxx		
SDI	Any	•			
Interval	Greater Than	¥	Minimum Time 100 ms		

Интервал - Передача

Установка условия, согласно которому декодированное значение сравнивается с выбранным диапазоном.

Команда дистанционного управления: TRIGger:A:ARINc:TTIMe:CONDition на стр. 620

Мин. время - Передача

Установка минимального значения диапазона времени передачи.

Команда дистанционного управления: TRIGger:A:ARINc:TTIMe:MINimum на стр. 620

Установка максимального значения диапазона времени передачи.

Komaнда дистанционного управления: TRIGger:A:ARINc:TTIMe:MAXimum на стр. 620

12.9.4 Результаты декодирования шины ARINC 429

После завершения конфигурирования последовательной шины можно осуществлять декодирование сигнала:
- 1. В меню "Шина" выберите "Декодировать".
- В меню "Отображ." задайте настройки отображения результата. См. гл. 12.1.2, "Отображение результатов декодирования", на стр. 202.
- В меню "Таблица шины" включите "Таблица шины". Задайте настройки таблицы.

См. также:гл. 12.1.3, "Таблица данных шины: Результаты декодирования", на стр. 203

Прибор захватывает и декодирует сигнал в соответствии с описанием протокола и конфигурационными параметрами.

Цветовое кодирование различных секций протокола и ошибок упрощает интерпретацию визуального отображения. Декодированная информация сжимается или расширяется в зависимости от масштаба по горизонтали. Для отображения результатов доступны различные форматы данных.

Столбец	Описание
Start Time (время начала)	Время начала слова относительно точки запуска
Stop Time (время окончания)	Время окончания слова относительно точки запуска
Label Name (имя метки)	Символьная метка, доступная, если был загружен и включен список меток
Label (метка)	Значение байтов метки
SDI	Состояние битов SDI
SSM	Состояние битов SSM
Data (данные)	Значение байтов данных
State (состояние)	Общее состояние кадра

Табл. 12-8: Содержимое таблицы данных шины ARINC 429

Команды дистанционного управления описаны в гл. 17.11.9.3, "ARINC 429 Decode Results", на стр. 621.

12.9.5 Поиск по декодированным данным ARINC 429

С помощью функции поиска можно обнаруживать одинаковые события в декодированных данных, по которым также может осуществляться запуск. В отличие от функции запуска, функция поиска позволяет обнаруживать все события в выборке, удовлетворяющие условию запуска. Результаты отображаются в таблице и могут быть сохранены в файл.

Поиск событий по сигналам шины ARINC 429

- 1. Правильно сконфигурируйте и декодируйте данные шины.
- 2. Выполните сбор декодированных данных.

- 3. Нажмите клавишу Search.
- 4. Выберите "Тип поиска" = "Protocol".
- 5. Выберите источник "Источник": шина, сконфигурированная для протокола ARINC 429.
- 6. Выберите событие "Событие", поиск которого будет выполнен.
- 7. Введите дополнительные настройки в зависимости от выбранного события.

Настройки поиска по сигналам шины ARINC 429

ARINC 429 -	31													2	×
			32 31	30 29	9 28 2	7 26 2	5 24 23 2:	2 21 20 19	18 17	16 15 14 13 12 11	10 9	8 7 6	5 4 3	2	1
Condition	Label and Data	*	P SS	м				Data Field	ł		SDI		Label		
									$(_$		X	LSB		MS	5B
Format	SSM+Data+SDI	۲		l	Jnuse	≥d			Data	: 8 Bit Offset: 0 Bit					
Symbolic ID	User defined														
Label	Equal	٠						Х	XXo	0xXX	XXX	xxxx			
SDI	Any	٠													
Data Size	8 Bit														
Data Offset	0 Bit														
Data	Equal	٠					0xXX				XXX	xxxxx			
SSM	Any	٠													

Рис. 12-43: Настройки поиска по сигналам шины ARINC 429

Слово

Поиск начала или конца слова.

Komaндa дистанционного управления: SEARch:PROTocol:ARINC:WORD[:TYPE] на стр. 628

Ошибка

Поиск ошибки протокола.

"Четность" Проверка четности и запуск, если результат четный.

"Ошибка про- Поиск ошибки временного интервала. Временной интервал автомежутка" матически рассчитывается на основании заданной частоты дискретизации.

"Ошибка Поиск ошибки кодирования.

кодирования"

Komaнда дистанционного управления: SEARch: PROTocol: ARINc: ERRor на стр. 626

Метка

Задание параметров метки, поиск которой будет выполнен.

Шина ARINC 429 (опция - K7)

ARINC 429 -	B1						? ×
Condition	Label	•					Label
						LSB	MSB
Symbolic ID	User defined	۲					
Label	In Range	*	Minimum	XXXo	0xXX	*****	
			Maximum	XXXo	0xXX	*****	

Символьный ID - Метка

Если в конфигурации шины был загружен и включен список меток с именами узлов, вместо ввода числового идентификатора можно просто выбрать имя узла из списка.

Запуск прибора осуществляется по идентификатору выбранного узла.

Метка и данные

Задание параметров метки и данных, поиск которых будет выполнен. См. также: Символьный ID

SSM - Метка и данные

Установка значений для битов матрицы знака/состояния (SSM).

Команда дистанционного управления: SEARch: PROTocol: ARINC: SSM на стр. 627

SDI - Метка и данные

Установка значений для битов идентификатора источника/назначения (SDI).

Команда дистанционного управления: SEARch: PROTocol: ARINC: SDI на стр. 627

Анализ последовательных шин

Шина ARINC 429 (опция - K7)

Данные - Метка и данные

Поиск данных, заданных в подменю.

Смещение данных - Данные - Метка и данные

Установка смещения данных.

Komaнда дистанционного управления: SEARch: PROTocol:ARINC:DATA:OFFSet на стр. 626

Размер данных - Данные - Метка и данные

Установка размера данных.

Команда дистанционного управления: SEARch: PROTocol: ARINC: DATA: SIZE на стр. 626

Сравнить - Данные - Метка и данные

Установка условия, согласно которому декодированное значение сравнивается с выбранным диапазоном.

Komaнда дистанционного управления: SEArch:PROTocol:ARINc:DATA:CONDition на стр. 625

Данные - Данные - Метка и данные

После задания условия "Сравнить" можно ввести значение побитово, установив каждый отдельный бит в высокое, низкое или произвольное (X) состояние. Кроме того, можно ввести шестнадцатеричное значение для каждого байта.

Команда дистанционного управления:

SEARch: PROTocol: ARINc: DATA: MAXimum Ha CTP. 625 SEARch: PROTocol: ARINc: DATA: MINimum Ha CTP. 626

12.9.6 Список меток ARINC 429

Список меток зависит от конкретного протокола. В файле со списком меток для протокола ARINC 429 содержится по три значения для каждого идентификатора:

- "Arinc Label": значение метки Arinc 429, которая определяет тип данных и параметры с ним связанные.
- "Symbolic label": символьное имя метки, определяющее функцию устройства.
- "Word Format": дополнительный параметр, описывающий композицию слова ARINC 429. Его значение может быть представлено в виде целого числа или мнемокода.

Определение формата слова

0	or	DATA	= <p< th=""><th>><</th><th>Data</th><th></th><th>></th><th>><label></label></th><th></th><th></th></p<>	><	Data		>	> <label></label>		
1	or	DATA_SDI	= <p< td=""><td>><</td><td>Data</td><td>><\$</td><td>SDI></td><td><label></label></td><td></td><td></td></p<>	><	Data	><\$	SDI>	<label></label>		
2	or	DATA_SSM	= <p< td=""><td>><ssm><</ssm></td><td>Data</td><td></td><td>></td><td><label></label></td><td></td><td></td></p<>	> <ssm><</ssm>	Data		>	<label></label>		
3	or	DATA_SDI_SSM	= <p< td=""><td>><ssm><</ssm></td><td>Data</td><td>><\$</td><td>SDI></td><td><label></label></td><td></td><td></td></p<>	> <ssm><</ssm>	Data	><\$	SDI>	<label></label>		
>3	3 01	SYSTEM_DEFAUL	I or	empty =	Default	format	as	defined	in	scope.

Анализ последовательных шин

Шина ARINC 429 (опция - K7)

Пример: РТТ-файл ARINC 429

```
# ------
@FILE_VERSION = 1.0
@PROTOCOL NAME = arinc429
# ------
# Labels for ARINC protocol
# Column order: Numeric address (Label), Symbolic label, Word format
# _____
# ----Definition----
@PROTOCOL_NAME = arinc429
1010, Distance to Go, 0
1020, Time to Go, DATA_SDI
1030, Engine Discrete, DATA_SSM
1040, Latitude, 3
1050, Ground Speed, 4
1060, Magnetic heading
# _____
```

Регулировка пробника

13 Анализ параметров электропитания (опция -K31)

С помощью прибора R&S RTM3000/RTA4004 и опции -K31 возможно проведение измерений с выполнением анализа параметров электропитания.

•	Регулировка пробника	294
•	Настройки отчета	296
•	Меню настроек статистики	297
•	Измерение входных параметров электропитания	.298
•	Измерение выходной мощности	311
•	Измерение коммутируемой мошности	320
•	Измерение параметров мошностного тракта	328
	a she a she she she she she she	

13.1 Регулировка пробника

13.1.1 Коррекция сдвига фазы пробников

Для измерения ряда параметров электропитания необходимо использовать токовые пробники и пробники напряжения. Перед началом таких измерений для получения корректного результата необходимо использовать коррекцию сдвига фазы пробников. Меню настроек для соответствующих измерений содержит функцию "Пробник" для регулировки пробников.

Необходимое оборудование:

- R&S RT-ZF20 стенд для устранения искажений питания
- Пробник напряжения от компании Rohde & Schwarz
- Токовый пробник от компании Rohde & Schwarz
- 1. Подключите к осциллографу дифференциальный пробник напряжения и токовый пробник.
- 2. Нажмите клавишу Apps Selection. Коснитесь функции "Измерение мощности".
- 3. Выберите измерение.
- В меню конфигурации выберите соответствующий канал для источников "Ток" и "Напряжение".
- 5. Выберите меню "Пробник".
- Подключите пробники к R&S RT-ZF20 стенд для устранения искажений питания.
- Выравняйте ("Выравнивание") пробники и задайте параметр "Смещение нуля".

 Отключите пробники от R&S RT-ZF20 стенд для устранения искажений питания.

13.1.2 Настройки пробников для проведения измерения параметров электропитания

- Для вызова меню настроек "Пробник":
 - а) Нажмите клавишу Apps Selection. Коснитесь функции "Измерение мощности".
 - b) Выберите измерение.
 - с) Закройте "Измерение мощности".
 - d) Коснитесь значка меню 🗇 в правом нижнем углу экрана.
 - е) Прокрутите список. Выберите функцию "Изм. мощн.".
 - f) В меню "Изм. мощн." выберите "Пробник".

Probe
<u>_/</u> -∕─ Deskew
4 Zero Offset

Выравнивание

Используйте R&S RT-ZF20 стенд для устранения искажений питания для проведения коррекции сдвига фазы пробников.

Запустится автоматическая процедура коррекции сдвига фазы, которая проведет выравнивание осциллограмм всех отображаемых каналов. Если для измерения используется токовый пробник и пробник напряжения, необходимо проводить коррекцию сдвига фазы.

Komaнда дистанционного управления: POWer:DESKew[:EXECute] на стр. 630

Смещение нуля

Разница в уровнях земли между ИУ и осциллографом может привести к сильному смещению нуля и искажению осциллограммы. Если ИУ использует опорный земляной уровень, функция "Смещение нуля" позволяет скорректировать ошибку смещения нуля пробника и оптимизировать результаты измерений при малых уровнях сигналов.

Необходимо закоротить сигнальный и земляной выводы и подключить их к земле ИУ. Затем нажать "Смещение нуля".

Komaнда дистанционного управления: POWer:ZOFFset[:EXECute] на стр. 630

13.2 Настройки отчета

В меню "Report" (отчет) можно ввести описание испытуемого устройства (ИУ) и условия проведения измерений. Эту информацию можно вывести на главную страницу при формировании отчета о результатах измерений "Power Analysis".

Report Setup		?	×
DUT	DEMO		
User	Rohde&Schwarz		
Site	Munich		
Description	_		
Temperature	20°		
Comment	Test1		

Отчет

Вызов меню "Report" (отчет) для ввода информации об ИУ и испытании и запуска экспорта результатов.

"Испытуемое устройство (ИУ)"	Ввод названия ИУ.				
"Польз."	Ввод имени пользователя.				
"Место"	Ввод места измерения.				
"Темпера- тура"	Ввод температуры проведения испытаний.				
"Описание"	Ввод описания испытания.				
"Сохранить"	Вызов меню "Save" (сохранить), в котором можно указать пара- метры сохранения и сохранить отчет на флэш-накопителе USB. Файл автоматически получит название.				
Команда дистанционного управления:					

POWer:REPort:DUT Ha CTP. 631 POWer:REPort:USER Ha CTP. 631 POWer:REPort:SITE Ha CTP. 631 POWer:REPort:TEMPerature Ha CTP. 631 POWer:REPort:DESCription Ha CTP. 631 POWer:REPort:OUTPut Ha CTP. 631

13.3 Меню настроек статистики

В меню статистики можно активировать и настроить статистические измерения. Статистические измерения доступны только для части измерений параметров электропитания.

- Для вызова меню настроек "Статистика":
 - а) Нажмите клавишу Apps Selection. Коснитесь функции "Измерение мощности".
 - b) Выберите измерение.
 - с) Закройте "Измерение мощности".
 - d) Коснитесь значка меню 🗇 в правом нижнем углу экрана.
 - е) Прокрутите список. Выберите функцию "Изм. мощн.".
 - f) В меню "Изм. мощн." выберите "Статистика".

Statist	ics	
<u>~</u>	Visible	
Avera	ige No.	Ċ
		1000
\$	Reset	
P	Export	►

Видим

Включение и выключение статистической оценки для выбранного измерения.

Komaнда дистанционного управления: POWer:STATistics:VISible на стр. 630

Кол-во усреднений

Установка числа измеренных осциллограмм для расчета среднего значения и среднеквадратического отклонения. Максимальное значение равно 1000.

Сброс

Очистка статистических результатов для текущего измерения или для всех измерений соответственно, и, при активном сборе данных, запуск новой статистической обработки.

Komahga дистанционного управления: POWer:STATistics:RESet на стр. 630

Экспорт

Вызов меню "Экспорт" для сохранения результатов измерения в файл формата CSV.

13.4 Измерение входных параметров электропитания

Анализ входной линии используется для измерения входных параметров электропитания, а также для анализа влияния, оказываемого источником питания на входную цепь.

13.4.1 Качество

При анализе качества электропитания проводится измерение входного напряжения и тока, а также итоговой мощности. Результаты измерений позволяют оценить качество входного электропитания.

13.4.1.1 Результаты измерений параметров качества

Доступны следующие результаты измерений "Качество":

- осциллограмма напряжения
- осциллограмма тока
- осциллограмма мощности, которая является произведением осциллограмм тока и напряжения
- численные результаты измерений

Также для каждого измерения имеется возможность включить статистическую обработку результатов. Она возвращает текущее, минимальное и максимальное значения результатов, среднее и СКО, а также количество измеренных сигналов.

Результаты измерения напряжения и тока

Результаты измерения напряжения и тока определяются следующим образом:

Result (результат)	Описание
RMS	Среднеквадратическое значение тока или напряжения, усредненное по N периодам
Crest, коэффициент ампли- туды	Пиковое значение / СКЗ
f, частота	Частота сигнала

Результаты измерения мощности

Мощность в системе описывается несколькими физическими величинами: активная мощность, реактивная мощность, полная мощность и угол сдвига фазы. На Диаграмма мощности для синусоидальных сигналов показано соотношение этих величин в случае синусоидальных токов и напряжений. ||S|| означает норму вектора S.

Рис. 13-1: Диаграмма мощности для синусоидальных сигналов

- Р = активная мощность [Вт]
- Q = реактивная мощность [ВАр]
- ||S|| = реактивная мощность [BA]
- φ = угол сдвига фазы между синусоидами напряжения и тока [°]

Результаты измерения мощности определяются следующим образом (см. табл. 13-1):

Табл.	13-1.	: Результаты	измерения	мощности
-------	-------	--------------	-----------	----------

Результат	Название, еди- ницы измерения	Формула	Описание
Apparent	Полная мощ- ность S (BA)	// <i>S//= V_{СКЗ} • I _{СКЗ}</i> (усредненная по N периодам)	S это абсолютное значение векторной суммы активной и реактивной мощностей.
Активные	Активная мощ- ность Р (Вт)	<i>P = V_{мгновенное} • I_{мгновенное}</i> (усредненная по N периодам)	Энергия системы, которая может быть использована для выполнения работы.
Reactive	Реактивная мощ- ность Q (ВАр, Вольт- Ампер реактивн.)	Q = S sinφ	Поток мощности, который вре- менно сохраняется в системе вследствие наличия индуктив- ных и емкостных компонентов.
Коэфф	Коэффициент мощности Р _{Factor}	P _{Factor} = P / S	Мера КПД системы. Значение находится в диапазоне от -1 до 1.
Angle	Фазовый угол ф (°)	$\varphi = acos (P_{Factor})$	Угол сдвига фазы между сину- соидами напряжения и тока.

Команды дистанционного управления описаны в гл. 17.12.11, "Quality", на стр. 648.

13.4.1.2 Конфигурирование измерения качества электроэнергии

Подробнее о параметрах конфигурации см. гл. 13.4.1.3, "Настройки измерения качества электроэнергии", на стр. 301.

- 1. Нажмите клавишу Apps Selection. Коснитесь функции "Измерение мощности".
- 2. На вкладке "Вход" выберите "Потребление".
- Подключите к осциллографу дифференциальный пробник напряжения и токовый пробник.
 Рекомендуется использовать высоковольтный дифференциальный пробник для измерений на силовом входе ИУ.
- 4. Необходимо размагнитить токовый пробник. Более подробную информацию см. в руководстве по эксплуатации токового пробника.
- 5. Выберите вкладку "Инструменты".
- Подключите пробники к R&S RT-ZF20 стенд для устранения искажений питания.
- Выравняйте ("Выравнивание") пробники и задайте параметр "Смещение нуля".
- Отключите пробники от R&S RT-ZF20 стенд для устранения искажений питания.
- 9. Подключите пробники к ИУ, как показано в диалоговом окне "Качество":
 - Подключите положительный (+) сигнальный вывод дифференциального пробника напряжения к фазовой линии электропитания.
 - Подключите отрицательный (-) сигнальный вывод дифференциального пробника напряжения к нулевой линии электропитания. Убедитесь, что используете общую землю.
 - Подключите токовый пробник в направлении протекания тока линии электропитания.
- 10. Закройте "Измерение мощности".
- 11. Нажмите кнопку "Меню" и пролистайте до меню "Изм. мощн.".
- 12. Выберите необходимые каналы для источников "Ток" и "Напряжение".
- 13. Для включения статистической обработки результатов измерений выберите "Статистика" > "Видим".
- 14. Нажмите кнопку Autoset для автоматической настройки масштаба экрана или настройте его вручную.

На экране отобразятся измерительные осциллограммы тока, напряжения и мощности. Кроме того, в левом нижнем углу отобразится окно с численными результатами измерения. Более подробную информацию см. в гл. 13.4.1, "Качество", на стр. 298.

13.4.1.3 Настройки измерения качества электроэнергии

- Для вызова меню настроек "Качество":
 - а) Нажмите клавишу Apps Selection. Коснитесь функции "Измерение мощности".
 - b) Выберите функцию "Качество".

- с) Закройте "Измерение мощности".
- d) Коснитесь значка меню 🗇 в правом нижнем углу экрана.
- е) Прокрутите список. Выберите функцию "Изм. мощн.".

Для регулировки пробников откройте меню "Пробник". Более подробную информацию см. в гл. 13.1.2, "Настройки пробников для проведения измерения параметров электропитания", на стр. 295.

Напряжение

Установка канала для источника напряжения. Рекомендуется использовать высоковольтный дифференциальный пробник для измерений на силовом входе ИУ.

Komaнда дистанционного управления: POWer:SOURce:VOLTage<n> на стр. 629

Ток

Установка канала для источника тока. Подключите токовый пробник в направлении протекания тока.

Komaнда дистанционного управления: POWer:SOURce:CURRent<n> на стр. 629

13.4.2 Энергопотребление

При анализе энергопотребления проводится измерение входного напряжения, входного тока и итоговой мощности. На основе этих значений вычисляется потребляемая энергия. Анализ энергопотребления лучше всего подходит для непериодических измерений, например, для измерения энергопотребления устройства в режиме ожидания.

13.4.2.1 Результаты измерения энергопотребления

Доступны следующие результаты измерений "Потребление":

- осциллограммы напряжения
- осциллограмма тока
- осциллограмма мощности, которая является произведением осциллограмм тока и напряжения
- численные результаты измерений

Описание численных результатов измерения энергопотребления приведено в "Результаты измерения мощности" на стр. 298.

Команды дистанционного управления описаны в гл. 17.12.4, "Consumption", на стр. 631.

13.4.2.2 Конфигурирование измерения энергопотребления

Подробнее о параметрах конфигурации см. гл. 13.4.2.3, "Настройки измерения энергопотребления", на стр. 303.

- 1. Нажмите клавишу Apps Selection. Коснитесь функции "Измерение мощности".
- 2. На вкладке "Вход" коснитесь "Потребление".
- Подключите к осциллографу дифференциальный пробник напряжения и токовый пробник.

Рекомендуется использовать высоковольтный дифференциальный пробник для измерений на силовом входе ИУ.

- 4. Необходимо размагнитить токовый пробник. Более подробную информацию см. в руководстве по эксплуатации токового пробника.
- 5. Выберите вкладку "Инструменты".
- Подключите пробники к R&S RT-ZF20 стенд для устранения искажений питания.
- Выравняйте ("Выравнивание") пробники и задайте параметр "Смещение нуля".
- Отключите пробники от R&S RT-ZF20 стенд для устранения искажений питания.
- 9. Подключите пробники к ИУ:
 - Подключите положительный (+) сигнальный вывод дифференциального пробника напряжения к фазовой линии электропитания.
 - Подключите отрицательный (-) сигнальный вывод дифференциального пробника напряжения к нулевой линии электропитания. Убедитесь, что используете общую землю.
 - Подключите токовый пробник в направлении протекания тока линии электропитания.
- 10. Закройте "Измерение мощности".
- 11. Нажмите кнопку "Меню" и пролистайте до меню "Изм. мощн.".
- 12. Выберите необходимые каналы для источников "Ток" и "Напряжение".
- 13. Нажмите кнопку Autoset для автоматической настройки масштаба экрана или настройте его вручную.

На экране отобразятся измерительные осциллограммы тока, напряжения и мощности. Кроме того, в левом нижнем углу отобразится окно с численными результатами измерения. Более подробную информацию см. в гл. 13.4.2, "Энергопотребление", на стр. 302.

13.4.2.3 Настройки измерения энергопотребления

Требуемые пробники:

- Дифференциальный пробник напряжения
- Токовый пробник
- Для вызова меню настроек "Потребление":
 - а) Нажмите клавишу Apps Selection. Коснитесь функции "Измерение мощности".

Power Analysis						・ ×
Input	Output	Switching	Power Path	Tools		
Qua Qua kV © © T Consun Inrush Q Inrush Q	(vin vin vin vin vin vin vin vin	Consumption	lysis measures the inp E time. The consumpti mode. e (+) signal socket of the e (-) signal socket of the probe in flow direction	but voltage, input curr on analysis is best suit ne differential voltage he differential voltage	ent, and the resulting power. Usin sed for non periodical measurement probe to the line of the AC input. probe to the neutral of the AC in he line of the AC input.	t t g these values, it calculates the energy tts, e.g. measuring the consumptionof put. Make sure that you use a common

b) На вкладке "Вход" выберите "Потребление".

Рис. 13-2: Схема анализа энергопотребления

- с) Закройте "Измерение мощности".
- d) Коснитесь значка меню 🗇 в правом нижнем углу экрана.
- е) Прокрутите список. Выберите функцию "Изм. мощн.".

Для регулировки пробников откройте меню "Пробник". Более подробную информацию см. в гл. 13.1.2, "Настройки пробников для проведения измерения параметров электропитания", на стр. 295.

Настройки источников напряжения и тока совпадают с аналогичными настройками для анализа качества электропитания, см. "Напряжение" на стр. 302 и "Ток" на стр. 302.

Перезапуск

Перезапуск измерения энергопотребления.

Komaнда дистанционного управления: POWer:CONSumption:RESTart на стр. 632

13.4.3 Гармоники

При анализе гармоник тока проводится измерение амплитуды частотных составляющих, которые могут попасть обратно в цепь переменного тока. Поэтому вычисляется БПФ с использованием окна с плоской вершиной. Анализ гармоник тока также позволяет проводить испытания устройств согласно требованиям стандартов на предварительные испытания на соответствие EN 61000-3-2 A / B / C / D.

13.4.3.1 Результаты измерений гармоник тока

Доступны следующие результаты измерений "Гармоники":

- осциллограмма напряжения
- осциллограмма тока
- численные результаты измерений
- гистограмма, отображающая измеренные значения гармоник по отношению к значению, указанном в стандарте

Табл. 13-2: Результаты измерений гармоник тока

Таблица результа- тов	Описание
Порядок	Порядок гармоники
Frequency (частота)	Значение частоты сигнала
Уровень	Уровень гармоники
Minimum (Минималь- ное)	Минимальное измеренное значение
Maximum (Макси- мальное)	Максимальное измеренное значение
Average (среднее значение)	Среднее значение уровня гармоник тока
Limit bar chart	Значение, заданное стандартом (белый столбец) и измеренное значение гар- моник тока (зеленый: значение соответствует пределам, установленным стандартом; красный: значение не соответствует пределам, установленным стандартом)
Limit (предельное значение)	Предельное значение для гармоник тока

Команды дистанционного управления описаны в гл. 17.12.7, "Current Harmonic", на стр. 636.

13.4.3.2 Конфигурирование измерения гармоник тока

Подробнее о параметрах конфигурации см. гл. 13.4.3.3, "Настройки измерения гармоник тока", на стр. 306.

- 1. Нажмите клавишу Apps Selection. Коснитесь функции "Измерение мощности".
- 2. На вкладке "Вход" коснитесь "Гармоники".
- Подключите к осциллографу дифференциальный пробник напряжения и токовый пробник.
 Рекомендуется использовать высоковольтный дифференциальный пробник для измерений на силовом входе ИУ.
- При необходимости, проведите размагничивание токового пробника. Более подробную информацию см. в руководстве по эксплуатации токового пробника.
- 5. Подключите пробники к ИУ:
 - Подключите положительный (+) сигнальный вывод дифференциального пробника напряжения к фазовой линии электропитания.
 - Подключите отрицательный (-) сигнальный вывод дифференциального пробника напряжения к нулевой линии электропитания. Убедитесь, что используете общую землю.
 - Подключите токовый пробник в направлении протекания тока линии электропитания.
- 6. Выберите необходимые каналы для источников "Ток" и "Напряжение".
- 7. Выберите "Стандарт".
- 8. Выберите "Основная".
- Нажмите кнопку Autoset для автоматической настройки масштаба экрана или настройте его вручную.

На экране отобразятся измерительные осциллограммы тока, напряжения и мощности. Кроме того, в таблице результатов отобразятся численные результаты измерения. Более подробную информацию см. в гл. 13.4.3.3, "Настройки измерения гармоник тока", на стр. 306.

13.4.3.3 Настройки измерения гармоник тока

Требуемые пробники:

- Дифференциальный пробник напряжения.
- Токовый пробник
- Для вызова меню настроек "Гармоники":

- а) Нажмите клавишу Apps Selection. Коснитесь функции "Измерение мощности".
- b) На вкладке "Вход" выберите "Гармоники".

Рис. 13-3: Схема анализа гармоник тока

- с) Закройте "Измерение мощности".
- d) Коснитесь значка меню 🗇 в правом нижнем углу экрана.
- е) Прокрутите список. Выберите функцию "Изм. мощн.".

Harmonics	
Voltage	Ç
C1	*
Current	Ç
C2	*
Standard	Ç
EN61000-3-2 A	*
Fundamental	Ç
Automatic	*
Result Table	►

Для регулировки пробников откройте меню "Пробник". Более подробную информацию см. в гл. 13.1.2, "Настройки пробников для проведения измерения параметров электропитания", на стр. 295.

Настройки источников напряжения и тока совпадают с аналогичными настройками для анализа качества электропитания, см. "Напряжение" на стр. 302 и "Ток" на стр. 302.

Стандарт

Выберите используемый стандарт для предварительных испытаний на соответствие.

"EN 61000-3-2 класс А"

Оборудование с балансировкой нагрузки между тремя фазами, бытовые электроприборы (исключая оборудование класса D), электрические инструменты (исключая переносные), регуляторы силы света для ламп накаливания, звуковое оборудование

"EN 61000-3-2 класс В"

Переносные электрические инструменты, непрофессиональное оборудование для дуговой сварки

"EN 61000-3-2 класс С"

Осветительное оборудование

"EN 61000-3-2 класс D"

ПК, мониторы ПК, радио- или ТВ-приемники, входная мощность которых не превышает или равна 600 Вт

"MIL-STD-1399"

Военное судовое пользовательское оборудование

"RTCA DO-160"

Климатические испытания авиационного радиоэлектронного оборудования

Komaндa дистанционного управления: POWer: HARMonics: STANdard на стр. 642

Основная

Задайте частоту входного сигнала. При выборе "Automatic" прибор проводит анализ сигнала и автоматически устанавливает основную частоту.

Команда дистанционного управления:

POWer: HARMonics: DOFRequency Ha ctp. 637 POWer: HARMonics: ENFRequency Ha ctp. 637 POWer: HARMonics: MIFRequency Ha ctp. 640

Табл. результ.

Вызов меню таблицы результатов, в котором можно задать настройки отображения и экспортировать результаты в файл. Более подробную информацию см. в гл. 13.2, "Настройки отчета", на стр. 296.

13.4.4 Пусковой ток

Анализ пускового тока позволяет измерить пиковое значение входного тока, вырабатываемого устройством при его первичном включении.

13.4.4.1 Результаты измерения пускового тока

Доступны следующие результаты измерений "Пусковой ток":

- осциллограмма тока
- численные результаты измерений:
 - "Peak1": оконный пусковой ток (максимальный ток)
 - "|у(х)*х|": площадь окна

Команды дистанционного управления описаны в гл. 17.12.8, "Inrush Current", на стр. 642.

13.4.4.2 Конфигурирование измерения пускового тока

Подробнее о параметрах конфигурации см. гл. 13.4.4.3, "Настройки измерения пускового тока", на стр. 309.

- 1. Нажмите клавишу Apps Selection. Коснитесь функции "Измерение мощности".
- 2. На вкладке "Вход" выберите "Пусковой ток".
- 3. Подключите токовый пробник к осциллографу.
- Проведите размагничивание и обнуление токового пробника. Более подробную информацию см. в руководстве по эксплуатации токового пробника.
- Подключите токовый пробник ко входу переменного тока ИУ в направлении протекания тока.
- 6. Выберите требуемый канал для источника "Ток".
- 7. Задайте параметр "Кол-во стробов".

На экране отображается измеренная осциллограмма тока. Кроме того, в левом нижнем углу отобразится окно с численными результатами измерения. Более подробную информацию см. в гл. 13.4.4.1, "Результаты измерения пускового тока", на стр. 309.

13.4.4.3 Настройки измерения пускового тока

- Для вызова меню настроек "Пусковой ток":
 - нажмите клавишу Apps Selection. Коснитесь функции "Измерение мощности".

Power Analysis							♪×
Input	Output	Switching	Power Path	Tools			
Qua Qua kW 0001 7 Consur Inrush Q Inrush Q	Inption	nrush Current The inrush current an Connect the current p	E E robe in flow direction	eak of the input current to the	ent that is drawn by the line of the AC input.	A L L L L L L L L L L L L L L L L L L L	ned on.

b) На вкладке "Вход" выберите "Пусковой ток".

Рис. 13-4: Схема анализа пускового тока

- с) Закройте "Измерение мощности".
- d) Коснитесь значка меню 🗇 в правом нижнем углу экрана.
- е) Прокрутите список. Выберите функцию "Изм. мощн.".

Для регулировки пробников откройте меню "Пробник". Более подробную информацию см. в гл. 13.1.2, "Настройки пробников для проведения измерения параметров электропитания", на стр. 295.

Настройки источников тока совпадают с аналогичными настройками для анализа качества электропитания, см. "Ток" на стр. 302.

Измерение выходной мощности

Кол-во стробов

Установка числа окон для измерения пускового тока. Можно задать до трех различных окон измерения.

Команда дистанционного управления:

```
POWer: INRushcurrent:GCOunt Ha CTp. 643
POWer: INRushcurrent:GATE<n>:STARt Ha CTp. 643
POWer: INRushcurrent:GATE<n>:STOP Ha CTp. 643
```

В разм. экрана

Сброс курсоров на начальные позиции. Эта функция может быть полезна, если курсоры скрылись с экрана или их необходимо переместить на большое расстояние.

13.5 Измерение выходной мощности

Анализ выходов используется для измерения характеристик выходного напряжения.

•	Пульсации	311
•	Спектр	314
•	Переходная характеристика	317

13.5.1 Пульсации

Функция "Ripple" (пульсации) позволяет проводить измерения пульсаций на выходе устройства. Эта функция анализа предназначена для измерения экстремумов размаха выходного сигнала постоянного тока. Кроме того, в рамках измерения вычисляется СКЗ переменной составляющей выходного сигнала постоянного тока, которое рассчитывается как СКО.

13.5.1.1 Результаты измерения пульсаций

Доступны следующие результаты измерений "Пульсации":

- осциллограмма напряжения
- численные результаты измерений

Также для каждого измерения имеется возможность включить статистическую обработку результатов. Она возвращает текущее, минимальное и максимальное значения результатов, среднее и СКО, а также количество измеренных сигналов.

Результаты измерения мощности определяются следующим образом:

Тип измерения	Сим- вол	Описание/Результат
Peak+ (пик+)	Vp+	Максимальное значение в пределах отображаемой осциллограммы.
Peak- (пик-)	Vp-	Максимальное значение в пределах отображаемой осциллограммы.
Peak peak	Vpp	Значение размаха осциллограммы: разность максимального и мини- мального значений. X _{ampl} = X _{Max} - X _{Min}
Mean	Mean	Среднее арифметическое значение всей отображаемой осциллограммы.
σ	σ	Среднеквадратическое отклонение отсчетов осциллограммы.
Period (период)	Т	Длительность самого левого периода сигнала отображаемой части осциллограммы.
Frequency (частота)	f	Частота сигнала. Значение вычисляется на основе самого левого периода сигнала отображаемой части осциллограммы.
Пол. к-т заполн	Dty+	Положительный коэффициент заполнения: Значение длительности положительного импульса, выраженное в % по отношению к периоду. Для измерения требуется, по меньшей мере, один полный период син- хронизированного сигнала.
Отр. к-т заполн	Dty-	Отрицательный коэффициент заполнения: Значение длительности отри- цательного импульса, выраженное в % по отношению к периоду. Для измерения требуется, по меньшей мере, один полный период синхрони- зированного сигнала.

Табл. 13-3: Характеристики выходных пульсаций

Команды дистанционного управления описаны в гл. 17.12.12, "Ripple", на стр. 651.

13.5.1.2 Конфигурирование измерения пульсаций

Подробнее о параметрах конфигурации см. гл. 13.5.1.3, "Настройки измерения пульсаций", на стр. 313.

- 1. Нажмите клавишу Apps Selection. Коснитесь функции "Измерение мощности".
- 2. На вкладке "Выход" коснитесь "Пульсации".
- Подключите к осциллографу дифференциальный пробник напряжения и токовый пробник.

Рекомендуется использовать высоковольтный дифференциальный пробник для измерений на силовом входе ИУ.

- 4. Необходимо размагнитить токовый пробник. Более подробную информацию см. в руководстве по эксплуатации токового пробника.
- 5. Выберите вкладку "Инструменты".
- Подключите пробники к R&S RT-ZF20 стенд для устранения искажений питания.

Измерение выходной мощности

- Выравняйте ("Выравнивание") пробники и задайте параметр "Смещение нуля".
- Отключите пробники от R&S RT-ZF20 стенд для устранения искажений питания.
- 9. Подключите пробники к ИУ:
 - Подключите пробник напряжения к выходному каскаду ИУ.
 - Подключите токовый пробник к выходному каскаду ИУ в направлении протекания тока.
- 10. Закройте "Измерение мощности".
- 11. Нажмите кнопку "Меню" и пролистайте до меню "Изм. мощн.".
- 12. Выберите требуемые каналы для "Источник".
- 13. Нажмите кнопку Autoset для автоматической настройки масштаба экрана или настройте его вручную.

На экране отобразятся измерительные осциллограммы тока, напряжения и мощности. Кроме того, в левом нижнем углу отобразится окно с численными результатами измерения. Более подробную информацию см. в гл. 13.5.1.1, "Результаты измерения пульсаций", на стр. 311.

13.5.1.3 Настройки измерения пульсаций

Требуемые пробники:

- Пробник напряжения
- (Дополнительно) Токовый пробник
- Для вызова меню настроек "Пульсации":
 - нажмите клавишу Apps Selection. Коснитесь функции "Измерение мощности".

Измерение выходной мощности

b) На вкладке "Выход" выберите "Пульсации".

Рис. 13-5: Схема анализа пульсаций

- с) Закройте "Измерение мощности".
- d) Коснитесь значка меню 💠 в правом нижнем углу экрана.
- е) Прокрутите список. Выберите функцию "Изм. мощн.".

<u> </u>	Out
Ripple	
Source	Ċ
C3	*

Источник

Установка канала для входа источника. Это может быть как источник тока, так и источник напряжения.

13.5.2 Спектр

Анализ спектра позволяет проводить измерения спектра выходного напряжения. Результаты могут быть использованы для получения наглядного преставления о типовых проблемах, связанных с побочными эффектами приложений SMPS (импульсный источник питания), такими как появление гармоник частоты переключения внутренних SMPS.

13.5.2.1 Результаты измерения выходного спектра

Доступны следующие результаты измерений "Спектр":

- осциллограмма напряжения
- Спектр
- численные результаты измерений

Более подробное описание численных параметров см. в табл. 13-2.

Команды дистанционного управления описаны в гл. 17.12.15, "Spectrum", на стр. 670.

13.5.2.2 Конфигурирование измерения выходного спектра

Подробнее о параметрах конфигурации см. гл. 13.5.2.3, "Настройки измерения выходного спектра", на стр. 316.

- 1. Нажмите клавишу Apps Selection. Коснитесь функции "Измерение мощности".
- 2. На вкладке "Выход" коснитесь "Спектр".
- Подключите к осциллографу дифференциальный пробник напряжения и токовый пробник.
 Рекомендуется использовать высоковольтный дифференциальный пробник для измерений на силовом входе ИУ.
- 4. Необходимо размагнитить токовый пробник. Более подробную информацию см. в руководстве по эксплуатации токового пробника.
- 5. Выберите вкладку "Инструменты".
- Подключите пробники к R&S RT-ZF20 стенд для устранения искажений питания.
- Выравняйте ("Выравнивание") пробники и задайте параметр "Смещение нуля".
- Отключите пробники от R&S RT-ZF20 стенд для устранения искажений питания.
- 9. Подключите пробники к ИУ:
 - Подключите пробник напряжения к выходному каскаду ИУ.
 - Подключите токовый пробник к выходному каскаду ИУ в направлении протекания тока.
- 10. Закройте "Измерение мощности".
- 11. Нажмите кнопку "Меню" и пролистайте до меню "Изм. мощн.".
- 12. Выберите требуемые каналы для "Источник".

Измерение выходной мощности

13. Нажмите кнопку Autoset для автоматической настройки масштаба экрана или настройте его вручную.

На экране отобразятся измеренные осциллограммы тока, напряжения и спектр. Кроме того, в левом нижнем углу отобразится окно с численными результатами измерения. Более подробную информацию см. в гл. 13.5.2.1, "Результаты измерения выходного спектра", на стр. 315.

13.5.2.3 Настройки измерения выходного спектра

Требуемые пробники:

- Дифференциальный пробник напряжения
- Токовый пробник
- Для вызова меню настроек "Спектр":
 - а) Нажмите клавишу Apps Selection. Коснитесь функции "Измерение мощности".
 - b) На вкладке "Выход" выберите "Спектр".

Power Analysis					・ ×
Input	Output	Switching	Power Path	Tools	
Rip Spec	Out ple	Spectrum The spectrum analysis switched-mode power • Connect the voltage • Connect the current	E measures the spectru supply (SMPS) applic probe to the output s probe in flow directio	m of the output volta ation, such as switchi tage of the DUT. n of the current to th	s age. The results can be applied to see typical side effect problems of the ning frequency components of internal SMPS. the output stage of the DUT.

Рис. 13-6: Схема анализа выходного спектра

- с) Закройте "Измерение мощности".
- d) Коснитесь значка меню 🗇 в правом нижнем углу экрана.

е) Прокрутите список. Выберите функцию "Изм. мощн.".

Источник

Установка канала для входа источника. Это может быть как источник тока, так и источник напряжения.

Основная

Установка частоты переключения прибора. Команда дистанционного управления: POWer:SPECtrum:FREQuency на стр. 671

13.5.3 Переходная характеристика

Функция анализа переходной характеристики позволяет проводить измерения отклика системы на отклонение от устойчивого состояния. Этот отклик характеризуется различными параметрами, такими как уровень выбросов, время установления, время максимума и время задержки.

13.5.3.1 Результаты измерения переходной характеристики

Доступны следующие результаты измерений "Transient Response":

- осциллограмма напряжения
- численные результаты измерений

Результаты измерения переходной характеристики определяются следующим образом:

Result (резуль- тат)	Символ	Описание
Rise Time (время нара- стания)	tr	Время, затрачиваемое на изменение уровня сигнала с 10 % до 90 % от заданного значения высокого состояния сигнала.
Уров. выброса	Ovr	Максимальное превышение уровнем сигнала заданного значения высокого состояния.

Табл. 13-4: Переходная характеристика

Анализ параметров электропитания (опция -K31)

Result (резуль- тат)	Символ	Описание
Вр.установл	Sett.	Временной интервал между курсором 1 и курсором 2.
Врем пика	tPeak	Время, затрачиваемое на достижение откликом системы первого максимума выброса.
Peak (пик.)	Peak (пик.)	Пиковое значение сигнала
Время задержки	Delay (задержка)	Время, затрачиваемое на достижение откликом системы уровня, равного половине заданного значения высокого состояния сигнала, после возникновения события запуска.

Команды дистанционного управления описаны в гл. 17.12.17, "Transient Response", на стр. 676.

13.5.3.2 Конфигурирование измерения переходной характеристики

Подробнее о параметрах конфигурации см. гл. 13.5.3.3, "Настройки измерения переходной характеристики", на стр. 318.

- 1. Нажмите клавишу Apps Selection. Коснитесь функции "Измерение мощности".
- 2. На вкладке "Выход" коснитесь "Переходная хар-ка".
- 3. Закройте "Измерение мощности".
- 4. Подключите пробник напряжения к осциллографу.
- 5. Подключите пробник напряжения к выходному каскаду ИУ.
- 6. Нажмите кнопку "Меню" и пролистайте до меню "Изм. мощн.".
- 7. Выберите требуемые каналы для "Источник".
- Задайте значение параметра "Уровень вершины" и параметра "Уровень основания".
- Нажмите кнопку Autoset для автоматической настройки масштаба экрана или настройте его вручную.

На экране отобразится осциллограмма измеренного напряжения. Кроме того, в левом нижнем углу отобразится окно с численными результатами измерения. Более подробную информацию см. в гл. 13.5.3, "Переходная характеристика", на стр. 317.

13.5.3.3 Настройки измерения переходной характеристики

Требуемые пробники:

- Дифференциальный пробник напряжения
- Для вызова меню настроек "Переходная хар-ка":

- а) Нажмите клавишу Apps Selection. Коснитесь функции "Измерение мощности".
- b) На вкладке "Выход" выберите "Переходная хар-ка".

Рис. 13-7: Схема анализа переходной характеристики

- с) Закройте "Измерение мощности".
- d) Коснитесь значка меню 🗇 в правом нижнем углу экрана.
- е) Прокрутите список. Выберите функцию "Изм. мощн.".

Для регулировки пробников откройте меню "Пробник". Более подробную информацию см. в гл. 13.1.2, "Настройки пробников для проведения измерения параметров электропитания", на стр. 295.

Настройки источников напряжения и тока совпадают с аналогичными настройками для анализа качества электропитания, см. "Напряжение" на стр. 302 и "Ток" на стр. 302.

13.6 Измерение коммутируемой мощности

Анализ переключающих и управляющих контуров используется для измерения внутренних характеристик переключающих устройств и надежности функционирования компонентов.

•	Скорость нарастания	320
•	Модуляция	323
•	Динамическое сопротивление во включенном состоянии	325

13.6.1 Скорость нарастания

Эта функция анализа позволяет проводить измерения скорости нарастания осциллограммы напряжения или тока при переключении, выполняемом переключающим транзистором.

13.6.1.1 Результаты измерения скорости нарастания

Доступны следующие результаты измерения "Slew Rate":

- осциллограмма напряжения или осциллограмма тока
- осциллограмма производной от напряжения и тока
- численные результаты измерений

Более подробное описание численных результатов измерения см. в гл. 13.5.1.1, "Результаты измерения пульсаций", на стр. 311.

Также для каждого измерения имеется возможность включить статистическую обработку результатов. Она возвращает текущее, минимальное и максимальное значения результатов, среднее и СКО, а также количество измеренных сигналов.

13.6.1.2 Более подробное описание численных результатов измерения см. в

Подробнее о параметрах конфигурации см. гл. 13.6.1.3, "Настройки измерения скорости нарастания", на стр. 321.

- 1. Нажмите клавишу Apps Selection. Коснитесь функции "Измерение мощности".
- 2. На вкладке "Переключение" коснитесь "Ск-ть нарастания".
- Подключите к осциллографу дифференциальный пробник напряжения и токовый пробник.

Рекомендуется использовать высоковольтный дифференциальный пробник для измерений на силовом входе ИУ.

- 4. Необходимо размагнитить токовый пробник. Более подробную информацию см. в руководстве по эксплуатации токового пробника.
- 5. Выберите вкладку "Инструменты".
- 6. Подключите пробники к R&S RT-ZF20 стенд для устранения искажений питания.
- Выравняйте ("Выравнивание") пробники и задайте параметр "Смещение нуля".
- Отключите пробники от R&S RT-ZF20 стенд для устранения искажений питания.
- 9. Подключите пробники к ИУ:
 - Подключите положительный (+) сигнальный разъем дифференциального пробника к стоку транзистора.
 - Подключите отрицательный (-) сигнальный разъем дифференциального пробника к истоку транзистора.
 - Подключите токовый пробник к истоку транзистора.
- 10. Закройте "Измерение мощности".
- 11. Нажмите кнопку "Меню" и пролистайте до меню "Изм. мощн.".
- 12. Выберите требуемые каналы для "Источник".
- 13. Задайте достаточно низкое значение "Дt".
- 14. Для включения статистической обработки результатов измерений выберите "Статистика" > "Видим".
- 15. Нажмите кнопку Autoset для автоматической настройки масштаба экрана или настройте его вручную.

На экране отобразятся осциллограммы тока, напряжения и производных напряжения и тока. Кроме того, в левом нижнем углу отобразится окно с численными результатами измерения. Более подробную информацию см. в гл. 13.6.1.1, "Результаты измерения скорости нарастания", на стр. 320.

13.6.1.3 Настройки измерения скорости нарастания

Требуемые пробники:

- Дифференциальный пробник напряжения
- Токовый пробник
- Для вызова меню настроек "Ск-ть нарастания":
 - а) Нажмите клавишу Apps Selection. Коснитесь функции "Измерение мощности".

Power Analysis					・ ×
Input	Output	Switching	Power Path	Tools	
Slew Modu G (C	Rate Rate	Slew Rate The slew rate analysis • Connect the positive • Connect the negativ • Connect the current	E measures the rate of te (+) signal socket of the probe to the source of	change of the voltag me differential probe he differential probe of the transistor.	$\frac{1}{\sqrt{2}}$

b) На вкладке "Переключение" выберите "Ск-ть нарастания".

- с) Закройте "Измерение мощности".
- d) Коснитесь значка меню 🗇 в правом нижнем углу экрана.
- е) Прокрутите список. Выберите функцию "Изм. мощн.".

Для регулировки пробников откройте меню "Пробник". Более подробную информацию см. в гл. 13.1.2, "Настройки пробников для проведения измерения параметров электропитания", на стр. 295.

Источник

Установка канала для источника. Это может быть как источник тока, так и источник напряжения.

∆t

Установка дельта интервала.

Komaнда дистанционного управления: POWer:SLEWrate:DTIMe на стр. 658

13.6.2 Модуляция

Анализ модуляции позволяет проводить измерения импульсного сигнала управления, передаваемого в переключающее устройство.

13.6.2.1 Результаты анализа модуляции

Доступны следующие результаты измерений "Модуляция":

- осциллограмма напряжения или осциллограмма тока
- численные результаты измерений

Более подробное описание численных результатов измерения см. в гл. 13.5.1.1, "Результаты измерения пульсаций", на стр. 311.

Также для каждого измерения имеется возможность включить статистическую обработку результатов. Она возвращает текущее, минимальное и максимальное значения результатов, среднее и СКО, а также количество измеренных сигналов.

13.6.2.2 Конфигурирование модуляционного анализа

Подробнее о параметрах конфигурации см. гл. 13.6.2.3, "Настройки анализа модуляции", на стр. 324.

- 1. Нажмите клавишу Apps Selection. Коснитесь функции "Измерение мощности".
- 2. На вкладке "Переключение" коснитесь "Модуляция".
- Подключите к осциллографу дифференциальный пробник напряжения и токовый пробник.
 Рекомендуется использовать высоковольтный дифференциальный пробник

для измерений на силовом входе ИУ.

- Необходимо размагнитить токовый пробник. Более подробную информацию см. в руководстве по эксплуатации токового пробника.
- 5. Выберите вкладку "Инструменты".
- Подключите пробники к R&S RT-ZF20 стенд для устранения искажений питания.
- Выравняйте ("Выравнивание") пробники и задайте параметр "Смещение нуля".
- Отключите пробники от R&S RT-ZF20 стенд для устранения искажений питания.
- 9. Подключите пробники к ИУ:
 - Подключите положительный (+) сигнальный разъем дифференциального пробника к затвору транзистора.
 - Подключите отрицательный (-) сигнальный разъем дифференциального пробника к истоку транзистора.

- Подключите токовый пробник к стоку транзистора.
- 10. Закройте "Измерение мощности".
- 11. Нажмите кнопку "Меню" и пролистайте до меню "Изм. мощн.".
- 12. Выберите требуемые каналы для "Источник".
- 13. Нажмите кнопку Autoset для автоматической настройки масштаба экрана или настройте его вручную.

На экране отобразятся измерительные осциллограммы тока, напряжения и мощности. Кроме того, в левом нижнем углу отобразится окно с численными результатами измерения. Более подробную информацию см. в гл. 13.6.2.1, "Результаты анализа модуляции", на стр. 323.

13.6.2.3 Настройки анализа модуляции

Требуемые пробники:

- Дифференциальный пробник напряжения.
- Токовый пробник
- Для вызова меню настроек "Модуляция":
 - нажмите клавишу Apps Selection. Коснитесь функции "Измерение мощности".
 - b) На вкладке "Переключение" выберите "Модуляция".

Power Analysis					ب× بر		
Input	Output	Switching	Power Path	Tools			
Slew Modu G (C	Rate	The modulation analy Connect the positive Connect the negative Connect the current	E E sis measures the cont (+) signal socket of the e (-) signal socket of th probe to the drain of	rol pulse signal to a sine differential probe the differential probe the transistor.	switching device. to the gate of the transistor. to the source of the transistor.	A L L L L L L L L L L L L L L L L L L L	

Рис. 13-9: Схема анализа модуляции

- с) Закройте "Измерение мощности".
- d) Коснитесь значка меню 🗇 в правом нижнем углу экрана.
Измерение коммутируемой мощности

е) Прокрутите список. Выберите функцию "Изм. мощн.".

Для регулировки пробников откройте меню "Пробник". Более подробную информацию см. в гл. 13.1.2, "Настройки пробников для проведения измерения параметров электропитания", на стр. 295.

Source (Источник)

Установка канала для источника. Это может быть как источник тока, так и источник напряжения.

Туре (тип)

Выбор типа модуляции. На экране отобразится расчет осциллограммы для выбранного типа измерения. Можно выбрать период, частоту, положительный/ отрицательный коэффициент заполнения и длительность положительного/отрицательного импульса.

Komaндa дистанционного управления: POWer:MODulation: TYPE на стр. 647

13.6.3 Динамическое сопротивление во включенном состоянии

Функция анализа динамического сопротивления во включенном состоянии позволяет проводить измерения сопротивления устройства коммутации в процессе работы. Поскольку напряжение и ток могут изменяться с течением времени, сопротивление не является постоянным, поэтому такое сопротивление называется динамическим сопротивлением во включенном состоянии. Оно определяется соотношением dV/dI.

13.6.3.1 Результаты анализа динамического сопротивления во включенном состоянии

Доступны следующие результаты измерения "Dynamic On Resistance":

- осциллограммы напряжения
- осциллограмма тока
- значение динамического сопротивления во включенном состоянии

Команды дистанционного управления описаны в гл. 17.12.5, "Dynamic ON Resistance", на стр. 633.

Измерение коммутируемой мощности

13.6.3.2 Конфигурирование анализа динамического сопротивления во включенном состоянии

Подробнее о параметрах конфигурации см. гл. 13.6.3.3, "Настройки анализа динамического сопротивления во включенном состоянии", на стр. 327.

- 1. Нажмите клавишу Apps Selection. Коснитесь функции "Измерение мощности".
- 2. На вкладке "Переключение" коснитесь "Динам. сопр. в откр.сост.".
- Подключите к осциллографу дифференциальный пробник напряжения и токовый пробник.
 Рекомендуется использовать высоковольтный дифференциальный пробник для измерений на силовом входе ИУ.
- 4. Необходимо размагнитить токовый пробник. Более подробную информацию см. в руководстве по эксплуатации токового пробника.
- 5. Выберите вкладку "Инструменты".
- Подключите пробники к R&S RT-ZF20 стенд для устранения искажений питания.
- Выравняйте ("Выравнивание") пробники и задайте параметр "Смещение нуля".
- Отключите пробники от R&S RT-ZF20 стенд для устранения искажений питания.
- 9. Подключите пробники к ИУ:
 - Подключите положительный (+) сигнальный разъем дифференциального пробника к стоку транзистора.
 - Подключите отрицательный (-) сигнальный разъем дифференциального пробника к истоку транзистора.
 - Подключите токовый пробник к истоку транзистора.
- 10. Закройте "Измерение мощности".
- 11. Нажмите кнопку "Меню" и пролистайте до меню "Изм. мощн.".
- 12. Выберите необходимые каналы для источников "Ток" и "Напряжение".
- Нажмите кнопку Autoset для автоматической настройки масштаба экрана или настройте его вручную.

На экране отобразится измеренные осциллограммы тока и напряжения. Кроме того, в правом нижнем углу отобразится окно с численными результатами измерения. Более подробную информацию см. в гл. 13.6.3.1, "Результаты анализа динамического сопротивления во включенном состоянии", на стр. 325.

Измерение коммутируемой мощности

13.6.3.3 Настройки анализа динамического сопротивления во включенном состоянии

Требуемые пробники:

- Дифференциальный пробник напряжения
- Токовый пробник
- Для вызова меню настроек "Динам. сопр. в откр.сост.":
 - а) Нажмите клавишу Apps Selection. Коснитесь функции "Измерение мощности".
 - b) На вкладке "Переключение" выберите "Динам. сопр. в откр.сост.".

øer Analysis					ν×
Input	Output	Switching	Power Path	Tools	
Slew Modu	Rate	Dynamic On Res The dynamic On resist n time, the resistance connect the positive connect the negative connect the current	sistance	e differential probe the transistor.	$\mathbf{V} = \mathbf{V}$ $\mathbf{V} = \mathbf{V}$ $\mathbf{V} = \mathbf{V}$ Switching device, during operation. Because voltage and current may vary an resistance. It is defined as the ratio dV/dl. to the drain of the transistor. to the source of the transistor.

Рис. 13-10: Схема анализа динамического сопротивления во включенном состоянии

- с) Закройте "Измерение мощности".
- d) Коснитесь значка меню 🗇 в правом нижнем углу экрана.
- е) Прокрутите список. Выберите функцию "Изм. мощн.".

ه ₊(۲ ^D ۶	
Dynamic On Res.	
Voltage	Ċ
C1	*
Current	Ċ
C2	*
Set To Scree	n

Для регулировки пробников откройте меню "Пробник". Более подробную информацию см. в гл. 13.1.2, "Настройки пробников для проведения измерения параметров электропитания", на стр. 295.

Настройки источников напряжения и тока совпадают с аналогичными настройками для анализа качества электропитания, см. "Напряжение" на стр. 302 и "Ток" на стр. 302.

В разм. экрана

Сброс курсоров на начальные позиции. Эта функция может быть полезна, если курсоры скрылись с экрана или их необходимо переместить на большое расстояние.

13.7 Измерение параметров мощностного тракта

Измерение параметров мощностного тракта используется для анализа поведения устройств, которые управляют потоком мощности в схемах импульсных источниках питания (SMPS), включая переключающие устройства и катушки индуктивности.

•	КПД	. 328
•	Потери при переключении	331
•	Время включения/выключения	335
•	Область надежной работы (S.O.A.)	. 338

13.7.1 КПД

Функция анализа КПД позволяет проводить измерения входной и выходной мощностей источника питания. Функция анализа КПД "Power Efficiency" позволяет проводить измерения входной и выходной мощностей источника питания.

13.7.1.1 Результаты измерения КПД

Доступны следующие результаты измерения "Efficiency":

- осциллограммы напряжения
- осциллограмма тока
- осциллограмма мощности, которая является произведением осциллограмм тока и напряжения
- численные результаты измерений

Более подробное описание численных результатов измерения см. в гл. 13.5.1.1, "Результаты измерения пульсаций", на стр. 311.

Также для каждого измерения имеется возможность включить статистическую обработку результатов. Она возвращает текущее, минимальное и максимальное значения результатов, среднее и СКО, а также количество измеренных сигналов.

13.7.1.2 Конфигурирование измерения КПД

Подробнее о параметрах конфигурации см. гл. 13.7.1.3, "Настройки измерения КПД", на стр. 330.

- 1. Нажмите клавишу Apps Selection. Коснитесь функции "Измерение мощности".
- 2. На вкладке "Тракт питания" коснитесь "КПД".
- Подключите к осциллографу дифференциальный пробник напряжения и токовый пробник.
 Рекомендуется использовать высоковольтный дифференциальный пробник для измерений на силовом входе ИУ.
- 4. Необходимо размагнитить токовый пробник. Более подробную информацию см. в руководстве по эксплуатации токового пробника.
- 5. Выберите вкладку "Инструменты".
- Подключите пробники к R&S RT-ZF20 стенд для устранения искажений питания.
- Выравняйте ("Выравнивание") пробники и задайте параметр "Смещение нуля".
- Отключите пробники от R&S RT-ZF20 стенд для устранения искажений питания.
- 9. Подключите пробники к ИУ:
 - Подключите положительный (+) сигнальный разъем первого дифференциального пробника ко входу линии электропитания.
 - Подключите отрицательный (-) сигнальный разъем первого дифференциального пробника к нейтральному проводнику линии электропитания.
 - Подключите первый токовый пробник ко входу линии электропитания.
 - Подключите положительный (+) сигнальный разъем второго дифференциального пробника ко входу линии нагрузки.
 - Подключите отрицательный (-) сигнальный разъем второго дифференциального пробника к возвратному тракту нагрузки.
 - Подключите второй токовый пробник ко входу линии нагрузки, направив стрелку по направлению протекания тока.
- 10. Закройте "Измерение мощности".
- 11. Нажмите кнопку "Меню" и пролистайте до меню "Изм. мощн.".
- 12. Задайте требуемые каналы для источников "Входное напряжение", "Входной ток", "Выходное напряжение" и "Выходной ток".
- 13. Для включения статистической обработки результатов измерений выберите "Статистика" > "Видим".

14. Нажмите кнопку Autoset для автоматической настройки масштаба экрана или настройте его вручную.

На экране отобразятся измеренные осциллограммы токов и напряжений. Кроме того, в правом нижнем углу отобразится окно с численными результатами измерения. Более подробную информацию см. в гл. 13.7.1, "КПД", на стр. 328.

13.7.1.3 Настройки измерения КПД

Требуемые пробники:

- Два дифференциальных пробника напряжения
- Два токовых пробника
- Для вызова меню настроек "КПД":
 - а) Нажмите клавишу Apps Selection. Коснитесь функции "Измерение мощности".
 - b) На вкладке "Тракт питания" выберите "КПД".

Рис. 13-11: Схема анализа КПД

- с) Закройте "Измерение мощности".
- d) Коснитесь значка меню 🚸 в правом нижнем углу экрана.

е) Прокрутите список. Выберите функцию "Изм. мощн.".

Для регулировки пробников откройте меню "Пробник". Более подробную информацию см. в гл. 13.1.2, "Настройки пробников для проведения измерения параметров электропитания", на стр. 295.

Input Voltage (входное напряжение), Input Current (входной ток) Выбор канала для входного напряжения и входного тока.

Output Voltage (выходное напряжение), Output Current (выходной ток) Выбор канала для выходного напряжения и выходного тока.

13.7.2 Потери при переключении

Функция анализа потерь при переключении позволяет проводить измерения потерь мощности и энергии переключающего устройства, возникающих на фазах переключения и проводимости переключающего транзистора.

13.7.2.1 Результаты измерения потерь при переключении

Доступны следующие результаты измерений "Потери при коммутации":

- осциллограмма напряжения
- осциллограмма тока
- осциллограмма мощности, которая является произведением осциллограмм тока и напряжения
- численные результаты измерений

Численные результаты для выбранных параметров измерения отображаются для потерь энергии или мощности в соответствии с заданным параметром "Тип". Результаты измерения потерь при переключении отображают значения потерь мощности/энергии при переключении в Вт/Дж для следующих фаз:

Phase (фаза)	Символ	Область определения точек	Описание
Включ	On	Область между "t ₁ " и "t ₂ "	Временной интервал после пере- ключения устройства, в рамках которого уровень тока возрастает до значения, равного уровню тока насыщения.
Проводи- мость	Cond	Область между "t ₂ " и "t ₃ "	Временной интервал, в рамках которого значение напряжения находится на минимальном уровне насыщения и имеет место протекание тока.
Выключ	Off	Область между "t ₃ " и "t ₄ "	Временной интервал, в рамках которого по истечении короткого времени задержки значение напряжения возрастает до уровня, равного итоговому значению.
Непрово- димость	No Cond	Область между "t ₄ " и "t ₅ "	Временной интервал, в рамках которого отсутствует протекание тока. Потери в рамках этого интервала в идеале должны быть нулевыми.
Итог	Итог	Область между "t ₁ " и "t ₅ "	Период одного цикла переключе- ния.

Табл. 13-5: Фазы потерь при переключении

Команды дистанционного управления описаны в гл. 17.12.16, "Switching", на стр. 672.

13.7.2.2 Конфигурирование измерения потерь при переключении

Подробнее о параметрах конфигурации см. гл. 13.7.2.3, "Потери при переключении", на стр. 333.

- 1. Нажмите клавишу Apps Selection. Коснитесь функции "Измерение мощности".
- 2. На вкладке "Тракт питания" коснитесь "Потери при коммутации".
- Подключите к осциллографу дифференциальный пробник напряжения и токовый пробник.
 Рекомендуется использовать высоковольтный дифференциальный пробник для измерений на силовом входе ИУ.
- 4. Необходимо размагнитить токовый пробник. Более подробную информацию см. в руководстве по эксплуатации токового пробника.
- 5. Выберите вкладку "Инструменты".
- Подключите пробники к R&S RT-ZF20 стенд для устранения искажений питания.
- Выравняйте ("Выравнивание") пробники и задайте параметр "Смещение нуля".

- Отключите пробники от R&S RT-ZF20 стенд для устранения искажений питания.
- 9. Подключите пробники к ИУ:
 - Подключите положительный (+) сигнальный разъем дифференциального пробника к стоку транзистора.
 - Подключите отрицательный (-) сигнальный разъем дифференциального пробника к истоку транзистора.
 - Подключите токовый пробник к истоку транзистора.
- 10. Закройте "Измерение мощности".
- 11. Нажмите кнопку "Меню" и пролистайте до меню "Изм. мощн.".
- 12. Выберите необходимые каналы для источников "Ток" и "Напряжение".
- 13. Задайте параметр "Тип" для измерения.
- 14. Нажмите кнопку Autoset для автоматической настройки масштаба экрана или настройте его вручную.

На экране отобразятся измерительные осциллограммы тока, напряжения и мощности. Кроме того, в правом нижнем углу отобразится окно с численными результатами измерения. Более подробную информацию см. в гл. 13.7.2, "Потери при переключении", на стр. 331.

13.7.2.3 Потери при переключении

Требуемые пробники:

- Дифференциальный пробник напряжения
- Токовый пробник
- Для вызова меню настроек "Потери при коммутации":
 - нажмите клавишу Apps Selection. Коснитесь функции "Измерение мощности".

b) На вкладке "Тракт питания" выберите "Потери при коммутации".

Рис. 13-12: Схема анализа энергопотребления

- с) Закройте "Измерение мощности".
- d) Коснитесь значка меню 🗇 в правом нижнем углу экрана.
- е) Прокрутите список. Выберите функцию "Изм. мощн.".

Для регулировки пробников откройте меню "Пробник". Более подробную информацию см. в гл. 13.1.2, "Настройки пробников для проведения измерения параметров электропитания", на стр. 295.

Настройки источников напряжения и тока совпадают с аналогичными настройками для анализа качества электропитания, см. "Напряжение" на стр. 302 и "Ток" на стр. 302.

Тип

Выбор типа измерения, мощность или энергия, для измерения потерь при переключении. Результаты измерения отображаются в Вт для измерений мощности и в Дж для измерений энергии.

Команда дистанционного управления: POWer:SWITching:TYPE на стр. 676

Поместить на кривую

Автоматическая установка курсорных линий. Установка курсорных линий в стандартное положение на осциллограмме в зависимости от выбранного типа измерения.

13.7.3 Время включения/выключения

Функция анализа включения/выключения позволяет выполнять измерения времени, требуемого источнику питания для достижения определенного процента от выходного уровня устойчивого состояния при первоначальном включении или выключении.

13.7.3.1 Подключите второй токовый пробник ко входу линии нагрузки, направив стрелку по направлению протекания тока

Доступны следующие результаты измерений "Время ВКЛ/ВЫКЛ":

- осциллограмма входного напряжения
- осциллограмма выходного напряжения
- время включения/выключения

Команды дистанционного управления описаны в гл. 17.12.10, "Turn On/Off", на стр. 647.

13.7.3.2 Конфигурирование измерения времени включения/выключения

Подробнее о параметрах конфигурации см. гл. 13.7.3.3, "Настройки измерения времени включения/выключения", на стр. 336.

- 1. Нажмите клавишу Apps Selection. Коснитесь функции "Измерение мощности".
- 2. На вкладке "Тракт питания" выберите "Время ВКЛ/ВЫКЛ".
- Подключите к осциллографу дифференциальный пробник напряжения и токовый пробник.

Рекомендуется использовать высоковольтный дифференциальный пробник для измерений на силовом входе ИУ.

- 4. Необходимо размагнитить токовый пробник. Более подробную информацию см. в руководстве по эксплуатации токового пробника.
- 5. Выберите вкладку "Инструменты".
- Подключите пробники к R&S RT-ZF20 стенд для устранения искажений питания.
- Выравняйте ("Выравнивание") пробники и задайте параметр "Смещение нуля".
- Отключите пробники от R&S RT-ZF20 стенд для устранения искажений питания.
- 9. Подключите пробники к ИУ:
 - Подключите положительный (+) сигнальный разъем дифференциального пробника ко входу линии электропитания.
 - Подключите отрицательный (-) сигнальный разъем дифференциального пробника к нейтральному проводнику линии электропитания.
 - Подключите пассивный пробник напряжения ко входу ИУ для постоянного тока.
 - Подключите токовый пробник ко входу линии нагрузки, направив стрелку по направлению протекания тока.
- 10. Задайте требуемые каналы для источников "Входное напряжение" и "Выходное напряжение".
- 11. Задайте параметр "Тип" для измерения.
- 12. Нажмите кнопку Autoset для автоматической настройки масштаба экрана или настройте его вручную.

На экране отобразятся измеренные осциллограммы входного и выходного напряжений. Кроме того, в левом нижнем углу отобразится окно с численными результатами измерения. Более подробную информацию см. в гл. 13.7.3, "Время включения/выключения", на стр. 335.

13.7.3.3 Настройки измерения времени включения/выключения

Требуемые пробники:

- Два пробника напряжения
- Токовый пробник
- Для вызова меню настроек "Время ВКЛ/ВЫКЛ":
 - нажмите клавишу Apps Selection. Коснитесь функции "Измерение мощности".

Power Analysis					τ×.
Input	Output	Switching	Power Path	Tools	
P Effici U P Switchi	in out iency ng Loss OFF time	Turn ON/OFF Ti	me	g it takes a power sup he differential probe the bloc output of the DUT ath of the load with th	upply to reach a certain percentage of the steady state output level during to the line of the AC input. e to the neutral of the AC input. T, the direction of the arrow pointing towards the current flow.
		Рис. 13-13:	Схема анализ	а времени вкли	тючения/выключения

b) На вкладке "Тракт питания" выберите "Время ВКЛ/ВЫКЛ".

с) Закройте "Измерение мощности".

- d) Коснитесь значка меню 🗇 в правом нижнем углу экрана.
- е) Прокрутите список. Выберите функцию "Изм. мощн.".

In Out Out Turn ON/OFF time	
Туре	Ċ
Turn On Time	•
Input Voltage	Ċ
C1	٠
Output Voltage	Ċ
C3	٠
Output Voltage	Ċ
None	٠
Output Voltage	Ċ
None	٠

Для регулировки пробников откройте меню "Пробник". Более подробную информацию см. в гл. 13.1.2, "Настройки пробников для проведения измерения параметров электропитания", на стр. 295.

Тип

Выбор типа измерения: время включения или время выключения.

Входное напряжение

Установка канала для входного напряжения.

Выходное напряжение

Установка канала для выходного напряжения.

13.7.4 Область надежной работы (S.O.A.)

Область надежной работы определяется условиями по напряжению и току, при которых мощный полупроводниковый прибор должен работать без возникновения самоповреждений. Функция измерения "Safe Operating Area" позволяет получить диаграмму, определяющую безопасные условия эксплуатации устройства.

13.7.4.1 Результаты измерения области надежной работы

Результаты измерения "SOA" могут быть представлены следующими способами:

- С помощью диаграммы с графическим представлением:
 - осциллограммы напряжения
 - осциллограмма тока
- С помощью логарифмической или линейной ХҮ-диаграммы рассчитанных осциллограмм напряжения (ось Х) и тока (ось Y). С помощью логарифмической или линейной ХҮ-диаграммы рассчитанных осциллограмм напряжения (ось Х) и тока (ось Y).

Численные результаты тестирования по маске в области надежной работы описаны в табл. 13-6.

Табл. 13-6: Результаты тестирования по маске

Result (результат)	Описание
Число	Количество протестированных точек/выборок
Успеш	Количество точек/выборок, прошедших тестиро- вание по маске, т.е. находящихся в заданной маске области надежной работы
Сбой	Количество точек/выборок, не прошедших тести- рование по маске, т.е. находящихся вне задан- ной маске области надежной работы

Result (результат)	Описание
К-т наруш	Отношение количества выборок, нарушивших границы маски, к количеству протестированных выборок
Result (результат)	Тестирование считается неудачным, если коли- чество отчетов или выборок, нарушивших гра- ницы маски, превышает предельное количество нарушений, заданное в "Общ.допуск" / "Допуск сбора"

Команды дистанционного управления описаны в гл. 17.12.14, "S.O.A", на стр. 662.

13.7.4.2 Конфигурирование измерения области надежной работы

Подробнее о параметрах конфигурации см. гл. 13.7.4.3, "Настройки измерения области надежной работы", на стр. 340.

- 1. Нажмите клавишу Apps Selection. Коснитесь функции "Измерение мощности".
- 2. На вкладке "Тракт питания" коснитесь "SOA".
- Подключите к осциллографу дифференциальный пробник напряжения и токовый пробник.
 Рекомендуется использовать высоковольтный дифференциальный пробник для измерений на силовом входе ИУ.
- 4. Необходимо размагнитить токовый пробник. Более подробную информацию см. в руководстве по эксплуатации токового пробника.
- 5. Выберите вкладку "Инструменты".
- Подключите пробники к R&S RT-ZF20 стенд для устранения искажений питания.
- Выравняйте ("Выравнивание") пробники и задайте параметр "Смещение нуля".
- Отключите пробники от R&S RT-ZF20 стенд для устранения искажений питания.
- 9. Подключите пробники к ИУ:
 - Подключите положительный (+) сигнальный разъем дифференциального пробника к стоку транзистора.
 - Подключите отрицательный (-) сигнальный разъем дифференциального пробника к истоку транзистора.
 - Подключите токовый пробник к истоку транзистора.
- 10. Закройте "Измерение мощности".
- 11. Нажмите кнопку "Меню" и пролистайте до меню "Изм. мощн.".
- 12. Выберите необходимые каналы для источников "Ток" и "Напряжение".

- 13. Откройте меню "Настройка маски" и задайте параметры маски.
- 14. Откройте меню "Измерительная установка" и задайте параметры тестирования.
- 15. Нажмите кнопку Autoset для автоматической настройки масштаба экрана или настройте его вручную.

На экране отобразятся измеренные осциллограммы токов и напряжений. Кроме того, в правом нижнем углу отобразится окно с численными результатами измерения. Более подробную информацию см. в гл. 13.7.4.1, "Результаты измерения области надежной работы", на стр. 338.

13.7.4.3 Настройки измерения области надежной работы

Требуемые пробники:

- Дифференциальные пробники напряжения
- Токовый пробник
- Для вызова меню настроек "КПД":
 - а) Нажмите клавишу Apps Selection. Коснитесь функции "Измерение мощности".

b) На вкладке "Тракт питания" выберите "SOA".

Рис. 13-14: Схема анализа области надежной работы

- с) Закройте "Измерение мощности".
- d) Коснитесь значка меню 🗇 в правом нижнем углу экрана.
- е) Прокрутите список. Выберите функцию "Изм. мощн.".

Общие настройки

Настройки источников напряжения и тока совпадают с аналогичными настройками для анализа качества электропитания, см. "Напряжение" на стр. 302 и "Ток" на стр. 302.

Перезапуск

Перезапуск измерения области надежной работы.

Команда дистанционного управления: POWer:SOA:RESTart на стр. 670

Измерительная установка

Вызов меню для указания допуском измерительной установки, а также масштаба окна, см. "Test Settings (параметры испытания)" на стр. 343.

Настройка маски

Вызов меню для конфигурирования маски, см. "Mask Settings (параметры маски)" на стр. 341.

Нарушения экспорта

Вызов меню для сохранения результатов измерения в файле Excel.

Mask Settings (параметры маски)

В этом меню можно задать параметры маски.

Точка

Выбор точки маски.

Напряжение

Установка напряжения для выбранной точки.

Команда дистанционного управления:

POWer:SOA:LINear:POINt<m>:VOLTage Ha ctp. 665
POWer:SOA:LOGarithmic:POINt<m>:VOLTage Ha ctp. 665

Імин

Установка минимального значения тока в выбранной точке.

Команда дистанционного управления:

POWer:SOA:LINear:POINt<m>:CURRent:MINimum Ha CTP. 665
POWer:SOA:LOGarithmic:POINt<m>:CURRent:MINimum Ha CTP. 665

Імакс

Установка максимального значения тока в выбранной точке.

Команда дистанционного управления:

POWer:SOA:LINear:POINt<m>:CURRent Ha crp. 664
POWer:SOA:LINear:POINt<m>:CURRent:MAXimum Ha crp. 664
POWer:SOA:LOGarithmic:POINt<m>:CURRent Ha crp. 664
POWer:SOA:LOGarithmic:POINt<m>:CURRent:MAXimum Ha crp. 664

Добавить точку

Добавление точки в список, определяющий область надежной работы.

Komaнда дистанционного управления: POWer:SOA:LINear:ADD на стр. 664 POWer:SOA:LINear:INSert на стр. 664 POWer:SOA:LOGarithmic:ADD на стр. 664 POWer:SOA:LOGarithmic:INSert на стр. 664

Удалить точку

Удаление выбранной точки из списка, определяющего область надежной работы.

Komaнда дистанционного управления: POWer:SOA:LINear:REMove на стр. 665 POWer:SOA:LOGarithmic:REMove на стр. 665

Масшт. маски

Выбор масштаба маски, линейного или логарифмического.

Komaнда дистанционного управления: POWer:SOA:SCALe:MASK на стр. 670

Сохранить маску

Вызов меню для сохранения маски.

Загрузить маску

Вызов файлового менеджера для загрузки ранее сохраненной маски. Выбранная маска будет загружена и использована при последующем тестировании.

Test Settings (параметры испытания)

В этом меню можно задать допуски измерительной установки, а также масштаба окна, .

Test Setup	
Tot. Tolerance	Ċ
	1%
Acq. Tolerance	Ċ
	1%
Window Scale	Ċ
Logarithmic	*

Общ.допуск

Установка разрешенного общего допуска.

Komaнда дистанционного управления: POWer:SOA:RESult:TOTal:TOLerance на стр. 668

Допуск сбора

Установка разрешенного допуска сбора данных.

Komaндa дистанционного управления: POWer:SOA:RESult:ACQuisition:TOLerance на стр. 666

Масшт. окон - Допуск сбора

Выбор линейного или логарифмического масштаба для отображения результатов.

Команда дистанционного управления: POWer:SOA:SCALe:DISPlay на стр. 670

Сокращенное меню для логических каналов

14 Логический анализатор (опция -B1, MSO)

Опция смешанных сигналов -В1 добавляет функции логического анализатора к стандартным функциям осциллографа. С помощью логического анализатора можно проводить анализ и отладку встроенных цифро-аналоговых систем, использующих одновременно аналоговые сигналы и коррелированные по времени цифровые сигналы. Опция позволяет работать с 16 логическими каналами, объединенными в два логических пробника (блока) по 8 каналов в каждом. Прибор обеспечивает временное выравнивание и синхронизацию аналоговых и цифровых осциллограмм, что позволяет отобразить и проанализировать все критические временные соотношения между аналоговыми и цифровыми сигналами.

ПРЕДУПРЕЖДЕНИЕ

Гарантия точных результатов измерений

Опция логического анализатора -B1 с подключенным пробником можно рассматривать как тестовый пробник в соответствии с EN 61326-2-1, пункт 5.2.4.101. Поэтому измерения чувствительны к электромагнитным помехам. Чтобы устранить влияние помех, необходимо обеспечить дополнительное экранирование.

Следует соблюдать следующие практические рекомендации:

- Если для захвата данных используется какой либо канал блока, необходимо подключить земляной вывод каждого блока к земляному выводу испытуемого устройства. Земляной вывод улучшает качество передачи сигнала, повышая точность измерений.
- Для высокоскоростных измерений (время нарастания < 3 нс) следует использовать отдельное заземление для каждого блока.

Для включения логического анализа

Нажмите клавишу LOGIC.

14.1 Сокращенное меню для логических каналов

Есть два быстрых меню, отображающих состояние логических каналов, одно для блока "D7...D0" и одно для блока "D15...D8".

 Для вызова быстрого меню для логических каналов, коснитесь метки блока в нижней части экрана.

Если блок не был выбран, коснитесь дважды: один раз для выбора блока и второй для вызова сокращенного меню.

Логический анализатор (опция -B1, MSO)

Сокращенное меню для логических каналов

- 1 = выбор всех/одного логического канала
- 2 = отображение логического канала
- 3 = минимизация всех отображаемых каналов
- 4 = максимизация всех отображаемых каналов
- 5 = отображение порогового уровня каналов
- 6 = отображение состояния логического канала

Логические каналы - отображение состояния

Символ состояния логического канала отображает текущий уровень всех логических каналов и может принимать следующие значения:

- Е: логический канал находится в низком уровне
- П: логический канал находится в высоком уровне
- Е: во время измерения произошло изменение состояния логического канала

Команды дистанционного управления:

- LOGic:PROBe[:ENABle]? Ha CTP. 679
- DIGital<m>:CURRent:STATe:MINimum? Ha CTP. 679
- DIGital<m>:CURRent:STATe:MAXimum? Ha crp. 679
- LOGic:CURRent:STATe:MINimum? Ha CTP. 679
- LOGic:CURRent:STATe:MAXimum? Ha CTP. 679

Настройки логического анализатора

14.2 Настройки логического анализатора

Предварительные условия: к прибору подключен логический пробник.

- 1. Если логический анализ не включен, для его активации необходимо нажать клавишу LOGIC.
- Снова нажмите клавишу LOGIC.
 Откроется меню "Логич".

Откроется меню логич.

- 3. Включите требуемый блок или оба блока.
- 4. Коснитесь функции "Порог и выравн-е".
- 5. Задайте параметры "Технология" и "Гистерезис".

D7...D0 / D15...D8

Включение и выключение выбранного логического блока.

Также можно отдельно задать состояние каждого логического канала с помощью сокращенного меню, см. гл. 14, "Логический анализатор (опция -B1, MSO)", на стр. 345.

Команда дистанционного управления: LOGic:STATe на стр. 680

Порог и выравн-е

Вызов диалогового окна, в котором можно задать пороговый уровень и гистерезис, а также видимость каждого логического канала.

Связь уровней

Установка всех пороговых уровней и гистерезиса равным значениям первого полубайта (D0...D3).

Команда дистанционного управления: DIGital<m>: THCoupling на стр. 681

Обнулить все пробники

Выравнивание сдвига фазы между пробниками цифровых и аналоговых каналов.

Команда дистанционного управления: DIGital<m>:DESKew на стр. 682

Технология

Выбор порогового уровня: Доступны 3 набора предустановленных пороговых уровней, а также есть возможность ввести пользовательские значения.

- "TTL: 1,4 В" Установка порога 1,4 В, который, как правило, используется в транзисторно-транзисторной логике (transistor–transistor logic, TTL).
- "CMOS: 2,5 В" Установка порога 2,5 В, который, как правило, используется при работе с комплементарной структурой металл-оксид-полупроводник(complementary metal-oxide–semiconductor, CMOS).
- "ECL: -1,3 В" Установка порога -1,3 В, который, как правило, используется при работе с эмиттерно-связанной логикой (emitter-coupled logic, ECL).
- "Порог" Установка пользовательского порогового уровня. Введите значение в поле Порог.

Команда дистанционного управления: DIGital<m>: TECHnology на стр. 681

Порог

Установка порогового уровня в диапазоне от -2 В до +8 В с шагом 10 мВ, или отображение порогового уровня для выбранной технологии.

Команда дистанционного управления: DIGital<m>: THReshold на стр. 681

Гистерезис

Выбор величины гистерезиса, позволяющего избежать переключения состояния сигнала из-за воздействия шумов.

Команда дистанционного управления: DIGital<m>:HYSTeresis на стр. 681

Метка

Вызов меню для ввода пользовательской текстовой метки для отдельного логического канала.

Бит - Метка

Выбор логического канала или бита "Bit", для которого вводится метка.

- Для блока "D7...D0" можно выбрать бит "D0", "D1", "D2", ... или "D7".
- Для блока "D15...D8" можно выбрать бит "D8", "D9", "D10", ... или "D15".

Метка - Метка

Включение или отключение отображения пользовательской метки для выбранного логического канала.

Komaнда дистанционного управления: DIGital<m>:LABel:STATe на стр. 683

Предуст. метка - Метка

Выбор предварительно заданного текста ярлыка. Можно отредактировать текст с помощью функции "Ред. метки".

Ред. метки - Метка

Открытие экранной панели клавиш для ввода текста ярлыка. Если ранее был выбран предварительно заданный ярлык, он уже написан в строке ввода, и его можно изменить.

Максимальная длина имени составляет 8 символов, могут использоваться только ASCII-символы, содержащиеся на экранной панели клавиш.

Команда дистанционного управления: DIGital<m>:LABel на стр. 683

14.3 Логический запуск

Каждый логический канал может служить источником запуска. С помощью запуска по шаблону можно синхронизироваться с логической комбинацией аналоговых и цифровых каналов. Также можно задать время удержания запуска.

При использовании логического запуска в качестве уровня запуска используется пороговый уровень.

При использовании логического канала в качестве источника запуска доступны следующие типы запуска:

- Фрнт
- Ширина
- Pattern (шаблон): шаблон может использовать все активные логические каналы
- Время ожидания

Для анализа последовательных протоколов можно сконфигурировать протокол, выбрав логические каналы в качестве источников и использовать тип запуска "Посл. шина". Более подробную информацию см. в главе с описанием соответствующей шины.

14.4 Анализ логических каналов

Основным инструментом анализа для логических каналов являются анализ последовательных протоколов (PROTOCOL) и запуск по шаблону.

Также можно отобразить все логические каналы и изменять положение вертикальной шкалы. Также можно масштабировать осциллограммы (ZOOM).

Также, как обычно, для измерения логических каналов можно использовать автоматические и курсорные измерения.

См. также гл. 7.2, "Автоматические измерения", на стр. 129 и гл. 7.3, "Курсорные измерения", на стр. 137.

Еще можно экспортировать данные осциллограммы: клавиша SAVE LOAD > "Осцилл-мы"

14.5 Параллельные шины

Осциллограф R&S RTM3000/RTA4004 может отображать и декодировать до 16 каналов параллельной шины. Можно индивидуально назначить логические каналы битам шины.

Для запуска по параллельной шине можно использовать запуск по шаблону, см. гл. 5.8, "Запуск по шаблону", на стр. 80.

•	Конфигурация параллельной шины	350
•	Результаты декодирования	.353

14.5.1 Конфигурация параллельной шины

Можно создать параллельную шину или синхронную параллельную шину. Для синхронной параллельной шины тактовая линия и дополнительная линия сигнала выбора кристалла задаются в дополнении к остальным настройкам.

Доступ:PROTOCOL > "Тип шины" = "Parallel" / "Parallel Clocked" > "Конфигурация"

Откроется следующее меню конфигурации:

Параллельные шины

Configurati	on			?	×		
Bus 1	Source		Thresholds				
Bit O	— D8	*	D3-0	1.4 V			
1	— D9	*	D7-4	1.4 V		Configuration	
2	— D10	•	D11-8	1.4 V		Bus Width	Ċ
3	— D11	•	D1512	1.4 V			4 Bit
4	D12					Set to Default	
5	D13						
6	D14						
7	D15						
8	D8					•	
9	D9						
10	D10						
11	D11						
12	D12						
13	D13						
14	D14						
Bit 15	D15					t⊐ Back	

Рис. 14-1: Меню конфигурации параллельной шины

Параллельные шины

Рис. 14-2: Меню конфигурации синхронной параллельной шины

Меню содержит следующие настройки:

Ширина шины	352
Тороги	352
Источник	.353
Уст. по умолч	353
Зыбор чипа	353
Толярность	353
Терепад	.353
all a state of the	

Ширина шины

Установка числа анализируемых логических каналов (бит) с D0 по D15, составляющих параллельную или синхронную параллельную шину. Максимальное число равно числу входных логических каналов.

Komaнда дистанционного управления: BUS:PARallel:WIDTh на стр. 686 BUS:CPARallel:WIDTh на стр. 686

Пороги

Установка порога для каждого полубайта логических каналов: D0...D3, D4...D7, D8...D11, и D12...D15.

Эта настройка также доступна в меню конфигурации "Логич".

Команда дистанционного управления: DIGital<m>: THReshold на стр. 681

Источник

Выбор входного канала для каждого бита параллельной или синхронной параллельной шины.

При работе с синхронной параллельной шиной в последних двух каналах можно выбрать источника для "Clock" и "CS".

Команда дистанционного управления:

BUS:PARallel:DATA<m>:SOURce Ha CTP. 686 BUS:CPARallel:DATA<m>:SOURce Ha CTP. 686 BUS:CPARallel:CLOCk:SOURce Ha CTP. 687 BUS:CPARallel:CS:SOURce Ha CTP. 687

Уст. по умолч.

Сброс линий данных параллельной шины к стандартному порядку D0...D15.

Выбор чипа

Включение канала выбора кристалла для синхронной параллельной шины.

Komaндa дистанционного управления: BUS:CPARallel:CS:ENABle на стр. 687

Полярность

Для синхронной параллельной шины можно выбрать активный уровень сигнала выбора кристалла: высокий (/ high = 1) или низкий (/ low = 1).

Komaндa дистанционного управления: BUS:CPARallel:CS:POLarity на стр. 688

Перепад

Для синхронной параллельной шины можно выбрать выборку данных по нарастающему () или спадающему () фронту тактового сигнала, или по обоим фронтам() для удвоенной скорости передачи данных. Фронт тактового сигнала отмечает начало нового бита.

Komaндa дистанционного управления: BUS:CPARallel:CLOCK:SLOPe на стр. 687

14.5.2 Результаты декодирования

После завершения конфигурирования параллельной шины можно осуществлять декодирование сигнала:

- 1. В меню "Шина" выберите "Декодировать".
- В меню "Отображ." задайте настройки отображения результата. См. гл. 12.1.2, "Отображение результатов декодирования", на стр. 202.
- В меню "Таблица шины" включите "Таблица шины". Задайте настройки таблицы.

Параллельные шины

Рис. 14-3: Декодированный сигнал параллельной шины с таблицей шины

Рис. 14-4: Декодированный сигнал синхронной параллельной шины

Таблица шины содержит данные декодированного кадра и соответствующее время начала кадра.

Команды дистанционного управления описаны в гл. 17.13.2.3, "Parallel Buses - Decode Results", на стр. 688.

Функциональный генератор

15 Генерация сигналов (опция -В6)

Осциллограф R&S RTM3000/RTA4004 содержит встроенный функциональный генератор и генератор тестовых последовательностей, которые могут, например, формировать входные сигналы во время испытания схем.

Функциональный генератор позволяет формировать простые сигналы простых функций, модулированные синусоидальный сигнал, сигнал произвольной формы и сигналы развертки. Встроенный генератор тестовых последовательностей может формировать однократные и периодические тестовые последовательности и сигнальные последовательности простых шин.

15.1 Функциональный генератор

Функциональный генератор позволяет формировать простые сигналы простых функций, модулированные синусоидальный сигнал, сигнал произвольной формы и сигналы развертки. Сигнал подается на разъем AUX OUT передней панели.

Сокращенное меню

С помощью сокращенного меню функционального генератора можно вызвать полное меню и отключить функциональный генератор. Также можно создать сигнал произвольной формы, скопировав осциллограмму, и отобразить или убрать сигнал произвольной формы.

15.1.1 Основные настройки функционального генератора

• Нажмите клавишу GEN.

Функциональный генератор

Output	0
Function	
Sinusoid	~
Frequency	
	1 MHz
Amplitude	
	1 Vpp
Offset	
	0 V
Noise	
	0 %
Sweep	►
Modulatior	ו 🕨
Invert	0
Load	
50Ω	High-Z
← Back	

Выход

Включение функционального генератора.

Komaндa дистанционного управления: WGENerator:OUTPut[:ENABle] на стр. 695

Функция

Выбор типа формируемого сигнала. Для всех сигналов можно задать параметры Частота, Амплитуда, Смещение и Шум.

- "DC" Формирования сигнала постоянного тока.
- "Sine" Формирование синусоидального сигнала.
- "SinC" Формирование кардинального синуса (Sin(x)/x).
- "Rectangle" Формирование прямоугольного сигнала.
- "Импульсная" Формирование импульсного сигнала. Дополнительно можно задать параметры Коэффициент заполнения и Время фронта.
- "Triangle" Формирование треугольного сигнала.
- "Ramp" Формирование пилообразного сигнала. Можно задать параметр Полярность.

"Произвольный" Формирование сигнала произвольной формы, который является копией существующей осциллограммы, либо загружается из файла. См. гл. 15.1.4, "Настройки сигнала произвольной формы", на стр. 361.

"Exponential" Формирование экспоненциально-нарастающего сигнала. Можно задать параметр Полярность.

Команда дистанционного управления: WGENerator: FUNCtion на стр. 691

Частота

Установка частоты сигнала. Доступный диапазон частот зависит от выбранной функции. Более подробную информацию см. в технических данных.

Команда дистанционного управления: WGENerator: FREQuency на стр. 691

Полярность

Установка полярности.

Для сигнала типа "Exponential" можно выбрать между нарастающей и спадающей экспонентой. Для сигнала типа "Ramp" можно выбрать положительную или отрицательную полярность.

Команда дистанционного управления:

WGENerator:FUNCtion:EXPonential:POLarity Ha CTP. 692 WGENerator:FUNCtion:RAMP:POLarity Ha CTP. 692

Время фронта

Установка длительности фронта импульса.

Komaнда дистанционного управления: WGENerator:FUNCtion:PULSe:ETIMe на стр. 692

Коэффициент заполнения

Установка коэффициента заполнения импульса. Коэффициент заполнения определяет процент периода сигнала, в течение которого сигнал находится в высоком состоянии.

Komaнда дистанционного управления: WGENerator:FUNCtion:PULSe:DCYCle на стр. 691

Амплитуда

Установка амплитуды сигнала. Команда дистанционного управления:

WGENerator: VOLTage Ha CTp. 691

Смещение

Установка вертикального смещения формируемого сигнала.

Komaндa дистанционного управления: WGENerator:VOLTage:OFFSet на стр. 691

Генерация сигналов (опция -В6)

Функциональный генератор

Шум

Установка уровня шума формируемого сигнала.

Команда дистанционного управления:

WGENerator:NOISe:ABSolute Ha ctp. 695 WGENerator:NOISe:RELative Ha ctp. 695

Качание

Вызов меню для настройки развертки.

См. гл. 15.1.2, "Настройки развертки", на стр. 358.

Модуляция

Вызов меню для настройки модуляции.

См. гл. 15.1.3, "Настройки модуляции", на стр. 359.

Инверсия

Инверсия осциллограммы относительно уровня смещения.

Загрузить

Выбор сопротивления пользовательской нагрузки и сопротивления ИУ в месте их соединения. Можно выбрать либо "50Ω", либо "High-Z" (высокоимпедансный вход).

Komaнда дистанционного управления: WGENerator:OUTPut:LOAD на стр. 695

15.1.2 Настройки развертки

В режиме развертки по частоте (режиме качающейся частоты) осциллограф R&S RTM3000/RTA4004 формирует сигнал, частота которого постепенно изменяется от "Начальная частота" на стр. 359 до Конечная частота за определенное время Время развертки.

Качание

Включение или отключение изменения частоты.

Генерация сигналов (опция -В6)

Функциональный генератор

Команда дистанционного управления: WGENerator:SWEep[:ENABle] на стр. 696

Начальная частота

Установка начальной частоты сигнала развертки.

Komaндa дистанционного управления: WGENerator:SWEep:FSTart на стр. 696

Конечная частота

Установка конечной частоты сигнала развертки.

Команда дистанционного управления: WGENerator:SWEep:FEND на стр. 696

Время развертки

Установка длительности развертки.

Команда дистанционного управления: WGENerator:SWEep:TIME на стр. 696

Качание

Выбор типа развертки, линейного или логарифмического.

Команда дистанционного управления: WGENerator:SWEep:TYPE на стр. 696

15.1.3 Настройки модуляции

Модуляция - это изменение параметров несущего периодического сигнала по закону второго модулирующего сигнала. Тип модуляции определяет изменяемый параметр.

Модуляция

Включение и отключение модуляции.

Функциональный генератор

Komaнда дистанционного управления: WGENerator:MODulation[:ENABLE] на стр. 693

Тип модуляции

Выбор типа модуляции, определяющей способ изменения несущего сигнала.

- "AM" Амплитудная модуляция (AM). Амплитуда несущего сигнала изменяется по закону модулирующего сигнала.
- "ЧМ" Частотная модуляция (ЧМ). Частота несущего сигнала изменяется по закону модулирующего сигнала.
- "АМн" Амплитудная манипуляция (АМн). Амплитуда сигнала скачкообразно изменяется от 100% до амплитуды "Коэф. АМн" с заданной частотой модуляции "Частота".
- "ЧМн" Частотная манипуляция (ЧМн). Частота сигнала меняется от "Частота" до "Частота перестр." с заданной "Ск-ть ЧМн".

Команда дистанционного управления:

WGENerator: MODulation: TYPE Ha CTP. 693

Функция

Выбор типа модулирующего сигнала для АМ или ЧМ модуляции .

Komaнда дистанционного управления: WGENerator:MODulation:FUNCtion на стр. 693

Частота

Установка частоты модулирующего сигнала для АМ/ЧМ/АМн модуляции .

Команда дистанционного управления:

```
WGENerator:MODulation:AM:FREQuency Ha ctp. 694
WGENerator:MODulation:FM:FREQuency Ha ctp. 694
WGENerator:MODulation:ASK:FREQuency Ha ctp. 694
```

Коэф. АМ

Установка коэффициента модуляции, процента от амплитуды сигнала, используемого в АМ модуляции.

Komaндa дистанционного управления: WGENerator:MODulation:AM:DEPTh на стр. 694

Девиация

Установка девиации частоты, максимальной разницы между частотой модулирующего ЧМ сигнала и частотой несущего сигнала.

Komaндa дистанционного управления: WGENerator:MODulation:FM:DEViation на стр. 694

Коэф. АМн

Установка коэффициента модуляции, процента от амплитуды сигнала, используемого в АМн модуляции.

Komaндa дистанционного управления: WGENerator:MODulation:ASK:DEPTh на стр. 694
Функциональный генератор

Полярность

Выбор полярности пилообразной функции для АМ и ЧМ модуляции.

Команда дистанционного управления:

WGENerator:MODulation:RAMP:POLarity Ha CTP. 695

Частота перестр.

Установка второй частоты для ЧМн-модулированного сигнала.

Komaндa дистанционного управления: WGENerator:MODulation:FSK:HFREquency на стр. 694

Ск-ть ЧМн

Установка частоты переключения сигнала между несущей частотой и частотой перестройки.

Komaндa дистанционного управления: WGENerator:MODulation:FSK:RATE на стр. 695

15.1.4 Настройки сигнала произвольной формы

Сигнал произвольный формы можно создать на основе имеющейся в приборе осциллограммы или загрузить из файла. Сигнал произвольной формы можно отобразить на экране.

Visible	0
Source	Ċ
C1	•
🞊 Сору	
10ad	

Видим

Включение отображения сигнала произвольной формы.

Источник

Выбор источника сигнала произвольной формы. Можно загрузить существующий файл или скопировать текущую осциллограмму.

Команда дистанционного управления: WGENerator: ARBitrary: SOURce на стр. 692

Копировать

Загрузки осциллограммы из выбранного источника "Signal source".

Команда дистанционного управления:

WGENerator: ARBitrary: UPDate Ha CTp. 692

Загрузить

Вызов диалогового окна для выбора файла и загрузка выбранного файла. Прибор поддерживает форматы файлов .trf и .csv, такие же форматы используются для опорных осциллограмм.

Komaндa дистанционного управления: WGENerator:ARBitrary[:FILE]:NAME на стр. 692 WGENerator:ARBitrary[:FILE]:OPEN на стр. 693

15.2 Генератор тестовых последовательностей (шаблонов)

Генератор тестовых последовательностей (шаблонов) позволяет выводить параллельные последовательности на четыре разъема с Р0 по Р3 на передней панели прибора.

- 1. Нажмите клавишу **Ш** APPS SELECTION.
- 2. Коснитесь "Pattern Gen." (генератор шаблонов).

В диалоговом окне отобразятся выводы, на которые будет выводиться последовательность в зависимости от выбранного шаблона.

15.2.1 Выбор шаблона

Сост. шабл.

Включение и выключение вывода последовательности на разъемы с Р0 по Р3.

Генератор тестовых последовательностей (шаблонов)

Команда дистанционного управления: PGENerator: PATTern: STATe на стр. 697

Шаблон

Выбор типа шаблона.

"Square Wave" Формирование прямоугольного сигнала на разъеме Р0.

"Счетчик" Формирование сигнала 4-битного счетчика на разъемах с Р0 по Р3.
"Произволь- Создание, сохранение или загрузка произвольной 4-битной последовательности и ее выдача на разъемы с Р0 по Р3.
"Manual" Установка высокого или низкого состояния для каждого разъема.

"UART, SPI, Формирование сигнала шин для измерений без объекта измере-I2C, CAN, LIN" ния.

Команда дистанционного управления: PGENerator: FUNCtion на стр. 697

15.2.2 Настройки шаблона Square Wave

Доступ: 🗇 "Меню" > "Pattern Gen." > "Шаблон" = "Square Wave"

Частота

Установка частоты прямоугольного сигнала.

Значения "Frequency" (частота) и "Period" (период) взаимозависимы:

Period = 1/ Frequency

Если изменить значение, значение параметра "Период" также изменится.

Команда дистанционного управления:

PGENerator: PATTern: FREQuency Ha CTP. 698

Период

Установка периода прямоугольного сигнала. Если изменить значение, значение параметра "Частота" также изменится.

Генератор тестовых последовательностей (шаблонов)

Команда дистанционного управления: PGENerator:PATTern:PERiod на стр. 698

Полярность

Установка обычной или инверсной полярности.

Komaндa дистанционного управления: PGENerator:PATTern:SQUarewave:POLarity на стр. 701

Коэффициент заполнения

Установка коэффициента заполнения прямоугольного сигнала в диапазоне от 1% до 99%. Коэффициент заполнения определяет процент периода сигнала, в течение которого сигнал находится в высоком состоянии.

Komaндa дистанционного управления: PGENerator: PATTern: SQUarewave: DCYCle на стр. 701

15.2.3 Настройки шаблона Counter

Доступ: 🔷 "Меню" > "Pattern Gen." > "Шаблон" = "Counter"

Частота

Установка частоты переключения, скорости изменения шаблона. Прямоугольные сигналы на разъемах имеют следующие частоты:

- P0: f/2
- P1: f/4
- P2: f/8
- P3: f/16

Komaнда дистанционного управления: PGENerator:PATTern:COUNter:FREQuency на стр. 701

Направление

Изменение направления счета.

Kоманда дистанционного управления: PGENerator:PATTern:COUNter:DIRection на стр. 701

15.2.4 Настройки шаблона Arbitrary

Доступ: 🔷 "Меню" > "Pattern Gen." > "Шаблон" = "Arbitrary"

Генератор тестовых последовательностей (шаблонов)

15.2.4.1 Общие настройки

Сохранить

Вызов диалогового окна для сохранения осциллограммы в виде шаблона ARB. Текстовый файл содержит команды дистанционного управления и сохраняется в формате *.scp.

Можно выбрать место размещения "Location" (встроенная память или USB-накопитель), в котором будет сохранен файл осциллограммы.

Коснитесь функции "Save" (сохранить) для сохранения файла с текущим названием.

Коснитесь функции "New File" (создать файл) и введите название нового сохраняемого файла.

Также в данном диалоговом окне можно удалить устаревшие файлы.

Загрузить

Содержит функции для загрузки ARB сигнала.

Выберите место размещение "Location" (встроенная память или USB-накопитель), в котором находится файл и сам файл. Коснитесь функции "Load" (загрузить).

Также в данном диалоговом окне можно удалить устаревшие файлы.

Запуск по шаблону

Выбор режима запуска для шаблона ARB. Можно выбрать автоматический непрерывный запуск или ручной однократный запуск.

Komaндa дистанционного управления: PGENerator:PATTern:TRIGger:MODE на стр. 699

Генератор тестовых последовательностей (шаблонов)

15.2.4.2 Параметры шаблона

Длина шаблона

Выбор длины последовательности, т.е. числа отсчетов в шаблоне.

Komaнда дистанционного управления: PGENerator:PATTern:ARBitrary:DATA:LENGth на стр. 701

Индекс

Выбор отсчета. Выбранный отсчет отображается в информационном окне светло-синей линией. Также отображаются ближайшие ±8 бит.

Команда дистанционного управления:

PGENerator: PATTern: ARBitrary: DATA: APPend: INDex Ha CTP. 700

Значение

Установка значения для выбранного отсчета "Index".

Вывод

При включении позволяет заполнить большое количество отсчетов одним значением.

Удалить все

Удаление шаблона. Также сбрасываются значения параметров "Pattern Length" (длина шаблона) в 1 и "Value" (значение) в 0. Генератор тестовых последовательностей (шаблонов)

15.2.4.3 Настройки временных параметров

Время бита

Установка времени подачи каждого отсчета. Время общее для всех отсчетов.

Команда дистанционного управления: PGENerator:PATTern:STIMe на стр. 698

Период

Установка периода отсчетов. Период относится ко всему шаблону. Period= Pattern Length * Bit Time

Komaнда дистанционного управления: PGENerator:PATTern:PERiod на стр. 698

Пакет

При включении этой опции прибор делает паузу после каждого выведенного шаблона на время "Idle Time".

Komaнда дистанционного управления: PGENerator:PATTern:BURSt:STATe на стр. 698

Время простоя

Установка времени ожидания, времени, на которое прибор останавливается после каждой выдачи шаблона. Время "Idle Time" между шаблонами можно задать в диапазоне от 20 нс до 42 с шагом 10 нс.

Команда дистанционного управления: PGENerator: PATTern:ITIMe на стр. 698

N-цикл.

Установка числа повторения шаблона.

Komaндa дистанционного управления: PGENerator:PATTern:BURSt:NCYCle на стр. 699

Генератор тестовых последовательностей (шаблонов)

15.2.5 Настройки шаблона Manual

Доступ: 🗇 "Меню" > "Pattern Gen." > "Шаблон" = "Manual"

P0/P1/P2/P3

Установка высокого или низкого уровня на соответствующем выводе ручного шаблона.

Komaнда дистанционного управления: PGENerator:MANual:STATe<s> на стр. 702

15.2.6 Настройка последовательных шин

Генератор тестовых последовательностей можно использовать для формирования сигналов в соответствии с последовательными протоколами (сигналы шины).

Сформированные сигналы последовательного протокола являются псевдослучайными и их нельзя настраивать. Можно задать только тип протокола и скорость передачи данных.

Левый верхний контакт всегда является землей, уровень сигналов составляет порядка 1 В. В следующей таблице приведено назначение четырех выходов Р0, Р1, Р2 и Р3 в зависимости от протокола.

Signal (Сигнал)	P0	P1	P2	P3
UART	Прд	Прм	Не использ.	Не использ.
SPI	Clock (Тактирова- ние)	Mosi	Miso	Выбор интегр. схемы
12C	Clock SCL	Data SDA	Не использ.	Не использ.
CAN	CAN H	CAN L	Не использ.	Не использ.
LIN (ЛИНЕЙН.)	Выс	Нзк	Не использ.	Не использ.

Доступ: 🗇 "Меню" > "Pattern Gen." > "Шаблон" = "UART | SPI | I2C | CAN | LIN"

Генератор тестовых последовательностей (шаблонов)

Ск-ть передачи

Выбор скорости передачи данных сигнала шины.

Для конкретных шин доступны следующие значения:

- UART: 9600 Bit/s, 115.2 kBit/s, 1 MBit/s
- SPI: 100 kBit/s, 250 kBit/s, 1 MBit/s
- I2C: 100 kBit/s, 400 kBit/s, 1000 kBit/s, 3400 kBit/s
- CAN: 50 kBit/s, 100 kBit/s, 1 MBit/s
- LIN (ЛИНЕЙН.): 9.6 kBit/s, 10.417 kBit/s, 19.200 kBit/s

Активные

Выбор полярности шины UART.

Очистка

16 Техническое обслуживание

Прибор не нуждается в периодическом техническом обслуживании. Важно осуществлять только очистку прибора.

Для защиты передней панели и для безопасной и удобной транспортировки прибора на другое рабочее место предусмотрено несколько принадлежностей. Дополнительные принадлежности и номера для их заказа перечислены в технических данных.

В случае повреждения прибора свяжитесь с ближайшим сервисным центром Rohde & Schwarz. Список всех сервисных центров см. на веб-странице www.services.rohde-schwarz.com.

Адреса центров поддержки Rohde & Schwarz можно найти на веб-странице www.customersupport.rohde-schwarz.com.

16.1 Очистка

А ОСТОРОЖНО

Риск поражения электрическим током

Если влага попадает в корпус, например, при очистке прибора с использованием мокрой тряпки, прикосновение к прибору может привести к поражению электрическим током. Перед очисткой прибора чем-либо, отличным от сухой тряпки, убедитесь в том, что он выключен и отсоединен от всех источников питания.

ПРЕДУПРЕЖДЕНИЕ

Повреждение прибора чистящими средствами

Чистящие средства содержат такие вещества, как растворители (разбавители, ацетон и т.д.), кислоты, щелочи или другие вещества. Растворители могут повреждать, к примеру, надписи на передней панели, пластиковые детали и дисплеи.

Ни в коем случае не используйте чистящие средства для чистки внешних деталей прибора. Вместе этого пользуйтесь мягкой, сухой и безворсовой тряпкой для пыли.

ПРЕДУПРЕЖДЕНИЕ

Риск повреждения прибора из-за засоренных вентиляторов

Если прибор эксплуатируется в пыльных областях, вентиляторы со временем засоряются пылью или другими частицами. Регулярно проверяйте и чистите вентиляторы, чтобы они всегда работали надлежащим образом. Если прибор работает с засоренными вентиляторами в течение долгого периода времени, он перегревается, что может привести к потере работоспособности и даже повреждению.

- Очистите внешние детали прибора, используя мягкую, сухую и безворсовую тряпку для пыли.
- Регулярно проверяйте и чистите вентиляторы, чтобы они всегда работали надлежащим образом.
- 3. Очистите сенсорный экран следующим образом:
 - а) Нанесите небольшое количество стандартного средства для чистки экранов на мягкую ткань.
 - b) Осторожно протрите экран влажной (но не мокрой) тряпкой.
 - с) При необходимости удалите избыточную влагу с помощью сухой мягкой ткани.

16.2 Хранение и упаковка

Диапазон температур хранения приведен в технических данных прибора. При хранении в течение длительного времени прибор должен быть защищен от пыли.

При транспортировке и доставке прибор должен быть помещен в оригинальную упаковку. Две защитных пенопластовых детали предотвращают повреждение элементов управления и соединителей. Антистатическая упаковочная пленка предотвращает нежелательное накопление статических зарядов.

Если вы не используете оригинальную упаковку, используйте прочную картонную коробку подходящего размера и обеспечьте соответствующую подкладку для предотвращения скольжения прибора внутри упаковки. Следует упаковать прибор в антистатическую пленку для защиты его от электростатических разрядов.

16.3 Замена предохранителя

Прибор защищен плавким предохранителем. Он находится на задней панели между выключателем и разъемом сетевого питания.

Тип предохранителя: Размер 5х20 мм, 250 В~, Т3.15Н (медленно перегорающий), IEC60127-2/5

А ОСТОРОЖНО

Риск поражения электрическим током

Предохранитель является частью сетевого источника питания. Поэтому проведение работ с предохранителем при включенном питании может привести к поражению электрическим током. Перед открытием патрона предохранителя убедитесь в том, что прибор выключен и отсоединен от всех источников питания.

Всегда используйте предохранители, поставляемые компанией Rohde & Schwarz в качестве запчастей, или предохранители того же типа с теми же номинальными характеристиками.

- 1. Извлеките патрон предохранителя из гнезда на задней панели.
- 2. Замените предохранитель.
- 3. Вставьте патрон предохранителя обратно в гнездо до упора.

16.4 Безопасность данных

При необходимости отправки прибора на обслуживание или при эксплуатации прибора в защищенной среде ознакомьтесь с документом "Instrument Security Procedures" (Процедуры для обеспечения безопасности прибора), доступным на веб-странице прибора R&S RTM3000/RTA4004.

Все данные о текущей конфигурации прибора и пользовательские данные можно удалить с помощью меню "Настройка" > "Безопасное стирание".