Петлевой метод для силовых кабелей

При аварии на силовом кабеле для предварительной локализации зоны повреждения проводят измерения расстояния до места повреждения. Эти измерения можно разделить на две группы: локализация рефлектометром и измерения на постоянном токе. К последним относится петлевой метод.

Наиболее часто используются рефлектометрические измерения, однако в чистом виде с помощью рефлектометра удается локализовать повреждения с переходным сопротивлением до 100 Ом. Для поиска более высокоомных дефектов необходимо дополнительно использовать высоковольтную аппаратуру с целью прожига, удержания дуги или генерации стоячей волны. Ситуация осложняется неопределенностью коэффициента укорочения конкретного кабеля, большим затуханием и дисперсией высокочастотных сигналов.

Петлевой метод считается трудоемким, но способным обнаружить замыкания с переходным сопротивлением до нескольких десятков кОм. Трудоемкость зависит от фазности замыкания и используемой аппаратуры. Во многих случаях при однофазном повреждении и соответствующем аппаратном обеспечении петлевой метод может быть простым и эффективным.

АППАРАТНАЯ РЕАЛИЗАЦИЯ

Любой метод измерений нуждается в аппаратной реализации. Для кабелей связи существовал мост постоянного тока с ручным уравновешиванием типа ПКП-5. Более современные электронные приборы с автоматическими функциями принципиально упростили измерительную процедуру и полностью вытеснили простые мосты.

Для энергетических кабелей аппаратная поддержка застряла на уровне прошлого века. В продаже можно найти всего два отечественных прибора. Это мосты типа M333 и M333-M1. Именно этими приборами рекомендуется пользоваться для реализации петлевого метода. Указанные мосты могут использоваться как хорошие магазины сопротивлений, но в качестве современной аппаратной поддержки петлевого метода они, увы, безнадежны. От измерителя требуется очень высокая квалификация и зоркий глаз. Для связных кабелей использование аналогичного устройства (ПКП-5) сопровождалось многолетней практикой «старых» опытных измерителей. Для силовых кабелей такой исторически практики не сложилось. Именно поэтому петлевой метод описывается во многих учебниках по поиску неисправностей, но практически не применяется [2].

Что требуется от современного прибора для того чтобы замечательный метод обрел настоящую жизнь? Необходим прибор, позволяющий показать расстояние до зоны повреждения путем нажатия кнопки. Измерительные мостовые процедуры и вычисления должны производиться автоматически.

Современным стандартом для линейных измерений на кабелях связи является прибор ИРК-ПРО Альфа. Он объединяет рефлектометрический и мостовой методы в одном приборе. Для получения расстояния до повреждения изоляции кабеля мостовым методом измерителю достаточно нажать кнопку «УТЕЧКА». Измерительные и вычислительные процедуры производятся автоматически. Пользователь получает отфильтрованный результат в цифровом виде с высокой точностью.

Казалось бы, логично применить такой прибор для локализации утечек в силовых кабелях. К сожалению, это возможно лишь для кабелей с сечением до 20 кв.мм. Измерения на силовых кабелях с большим сечением жилы отличаются спецификой, которая требует создания специализированной модели. В чем состоит специфика измерений?

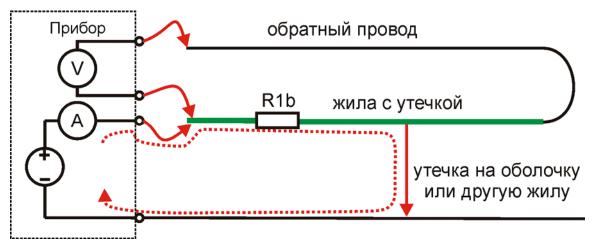
ОСНОВЫ ПЕТЛЕВОГО МЕТОДА (RFL)

Определение расстояния до места с пониженным сопротивлением изоляции жилы основано на измерении постоянным током сопротивления жилы до места утечки. Этот метод в современной литературе обозначен аббревиатурой RFL – Resistance Fault Locator (резистивный локатор утечки).

Чтобы провести измерения, необходимо включить участок с R1b в электрическую цепь. Для этого нужна неповрежденная обратная жила в кабеле:

Источник напряжения

Обратная жила играет роль измерительного провода вольтметра для измерения падения напряжения V на участке с R1b. По закону Ома


$$R1b = \frac{V}{I}$$

Техническая реализация (несмотря на очевидную простоту идеи) достаточно сложна.

Подключение к кабелю. Схема Кельвина

Для кабелей с сечением до 200 кв.мм погрешность измерения даже порядка сотых долей Ом может привести к катастрофически большой ошибке. Сопротивление в точке подключения кабеля к измерительному прибору прибавляется к сопротивлению самого кабеля и может внести погрешность в измерение R1b и соответственно в определении места утечки.

Для устранения влияния соединительных проводов и контактов необходимо использовать четырехпроводную схему (схема Кельвина).

В этом случае сопротивление измерительных проводов и точки подключения не имеют существенного значения на точность измерения до величин порядка кОм.

Обратная (измерительная) жила

Сопротивление изоляции обратного провода должно быть много больше сопротивления исследуемой утечки. Вольтметр должен показывать напряжение именно на R1b даже в условиях помех.

Если на обратном проводе плохая изоляция, то до вольтметра дойдет неправильное значение напряжения. Для обеспечения точности измерений R изоляции обратной жилы должно быть по крайней мере на 2 порядка больше поврежденной.

Это является естественным ограничителем по переходному сопротивлению в месте повреждения, которое может быть локализовано. Заводские нормы сопротивления изоляции жил находятся на уровне 50 Мом. Однако в процессе эксплуатации сопротивление изоляции заметно снижается. Нормой для изоляции считается уровень несколько Мом. Для кабелей с напряжением до 1 кВ допустимое значение составляет уже 0.5 Мом.

Уровень сопротивления изоляции неповрежденной жилы в 1 МОм ограничивает диапазон переходного сопротивления в месте утечки значениями 5-10 кОм. Выше этих значений недостаточно высокое сопротивление изоляции обратной жилы будет вносить большую погрешность в результат.

Измерительный ток

Для кабелей связи (сечением до 1,5 мм²) мостовой метод локализации повреждений является основным. Высокая точность и устойчивость к помехам достигаются методами цифровой обработки. Удается уверенно искать замыкания с переходным сопротивлением 20 МОм при значении измерительного тока в 0,02 мА. Зона локализации составляет 1-2 м.

Для силовых кабелей осложняющим фактором представляется большое сечение кабелей и малое значение погонного сопротивления. Увеличение сечения необходимо компенсировать пропорциональным увеличением измерительного тока.

Измерительный ток определяется тестовым напряжением и переходным сопротивлением в месте замыкания. С тестовым напряжением 24 В поиск утечки возможен для переходных сопротивлений в соответствии со следующей таблицей.

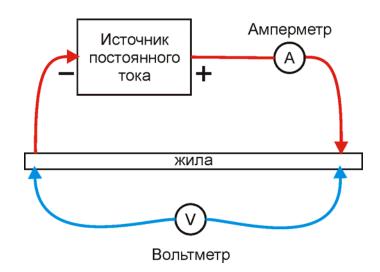
Сечение жилы [мм²]	Измерительный ток [мА]	R переходное [кОм]
1	0,02	1 200
10	0,2	120
50	1	24
100	2	12
200	4	6

И таблицы видно, что данная конфигурация измерений обеспечивает требуемый диапазон переходных сопротивлений для локализации повреждения. Вместе с тем, потребляемая мощность измерительной схемы соответствует уровню полевых измерительных приборов.

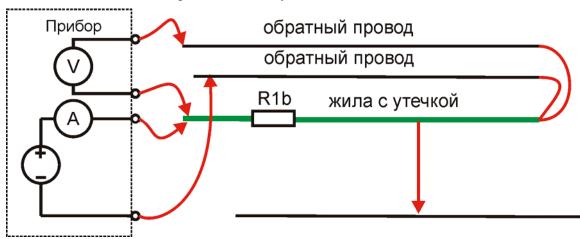
Место повреждения

Итак, петлевым методом можно определить сопротивление участка кабеля от прибора до точки утечки. Но на практике необходимо расстояние. Имеется несколько способов перевода сопротивления в расстояние.

- 1. Пересчет по погонному сопротивлению взятому из справочных данных о марке кабеля. Казалось бы, это самый верный способ. Но справочные данные не дают точных значений, а указывают погонное сопротивление в терминах «не хуже». Ко всему прочему погонное сопротивление зависит от температуры и необходимо вводить поправку.
- 2. Пересчет по фактическому сечению кабеля, удельному сопротивлению материала токопроводящей жилы и температуры. Здесь тоже много неопределенностей. Так при производстве может использоваться различные марки меди и алюминия с разными удельными сопротивлениями и температурными коэффициентами.

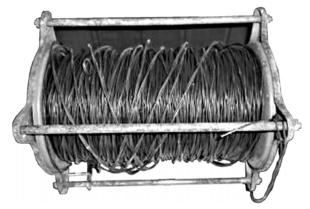

Материал жилы	Удельное сопротивление при 20°C [Ом·мм²/м]
Медь	0,01720
Медь А	0,01707
Медь В	0,01718
Медь С	0,01724
Алюминий	0,02826
Алюминий АМ	0,02800

Разброс составляет до 1% без учета температуры. Ошибка в температуре на 10°C градусов даст дополнительную погрешность в 4%.


3. Можно сравнить сопротивление до утечки R1b с сопротивлением мерного участка того же кабеля, находящегося в идентичных условиях. В этом случае простая арифметика даст правильный результат по расстоянию. Но где взять такой мерный отрезок? МОЖНО ИСПОЛЬЗОВАТЬ В КАЧЕСТВЕ МЕРНОГО ОТРЕЗКА САМ КАБЕЛЬ ОТ НАЧАЛА И ДО КОНЦА. Для этого необходимо только измерить сопротивление жилы до локализации повреждения. Схема измерения включается в общую схему локализации утечки.

Измерение сопротивления жилы кабеля. 1 способ.

Измерение сопротивления жилы по классической четырехпроводной схеме.



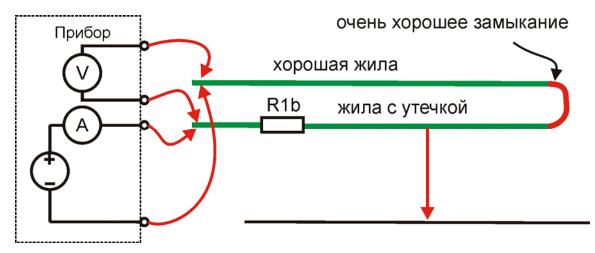
Для кабеля этот способ приводит к следующей схеме:

Для обеспечения четырехпроводной схемы необходимы две обратные хорошие жилы. Это легко сделать, если замыкание в кабеле однофазное. Такие однофазные повреждения жилы на оболочку считаются самыми распространенными [1].

Для многофазного замыкания необходимо проложить две вспомогательные жилы. Это можно сделать, например, с помощью популярного у военных полевого кабеля типа П-274(M) на катушке ТК-2. Такая катушка предназначена для оперативного развертывания линии из двух жил на местности и может вмещать до 500 м указанного кабеля.

Параметры кабеля П-274

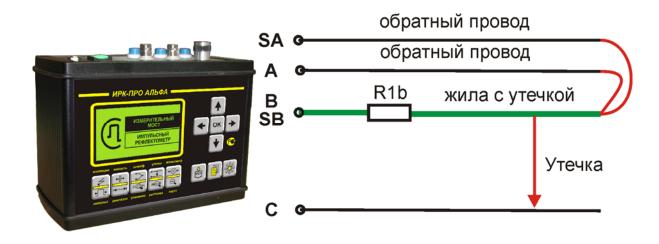
Удельное сопротивление жилы:


не более 65 Ом/км;

Сопротивление изоляции после 3 часов выдержки в воде:

не менее 1000 Мом.

Измерение сопротивления жилы кабеля. 2 способ.


Практически то же самое, но используется сопротивление двух жил, замкнутых на дальнем конце.

В этом случае в кабеле необходима только одна хорошая жила. Сопротивление одной жилы можно получить, просто разделив результат на два. Недостаток такого способа заключается в необходимости замыкания двух жил на дальнем конце с обеспечением очень малого вносимого дополнительного сопротивления. Если перемычка имеет сечение не меньше сечения жилы, то при условии хорошего контакта дополнительная ошибка составит 1 метр.

АЛЬФА-Е: ВЕРСИЯ ДЛЯ СИЛОВЫХ КАБЕЛЕЙ

Описанные выше условия измерений для петлевого метода реализованы в специализированной модели ИРК-ПРО Альфа-Е. В качестве основного мостового метода прибор использует принцип сравнения сопротивления до места утечки с сопротивлением жилы кабеля, измеренной по четырехпроводной схеме. От оператора требуется подключить прибор к кабелю. Качество контактов и замыканий на дальнем конце не имеет слишком большого значения.

Измерителю остается нажать кнопку [УТЕЧКА] и получить расстояние до утечки в процентах от длины кабеля. Если ввести длину кабеля, прибор покажет расстояние до повреждения в метрах. Точность будет обеспечена параметрами измерений и мостовой схемой подключения.

Конечно, в приборе реализованы и все другие способы определения расстояния. Можно вводить сечение и температуру. Вести базу кабелей. Тестировать сопротивления изоляции. Использовать рефлектометр для локализации повреждений. Но главное назначение прибора заключается именно в современной поддержке петлевого метода поиска замыкания в силовом кабеле.

ЛИТЕРАТУРА

- 1. Методические указания по определению места повреждения силовых кабелей напряжением до 10 кВ. РД 34.20.516-90. Министерство энергетики и электрификации СССР. Главное научно-техническое управление энергетики и электрификации. 10с.
- 2. Дементьев В.С. Как определить место повреждения в силовом кабеле. Библиотека электромонтера. М. Энергия. 1980. 72с.
- 3. Правила технической эксплуатации электроустановок потребителей. Приказ Минэнерго РФ от 13 января 2003 г. № 6.